RAPORT STIINTIFIC SI TEHNIC IN EXTENSO – ETAPA 1

Proiect: Magneti permanenti fara pamanturi rare cu eficienta energetic ridicata-MAGNEF

Cod proiect: PN-II-PT-PCCA_2013-4-0971 Nr. contract 275/2014

Rezumat:

S-a efectuat un studiu aprofundat al literaturii privind obtinerea de particule de Fe₁₆N₂ cu proprietati magnetice imbunatatite prin tratamente termice in flux de hidrogen si amoniac/azot a precursorilor oxidici si oxi-hidroxidici de fier si s-au stabilit conditiile pentru realizarea lor in acord cu datele din literatura. S-a efectuat un studiu amanuntit al literaturii privind prepararea de compusi oxidici (oxihidroxidici) de fier cu anizotropie de forma ridicata potriviti pentru prepararea de particule de Fe₁₆N₂ cu coercivitate marita si s-au stabilit conditiile de obtinere a respectivilor precursori oxidici (oxi-hidroxidici). S-au stabilit modurile de orientare a momentelor magnetice sub influenta campului magnetic aplicat in functie de dimensiunea particulelor de Fe₁₆N₂. S-au efectuat calcule privind fractia de liant cu care trebuie amestecata pulberea de particule magnetice de Fe₁₆N₂ pentru realizarea unui magnet permanent cu produs energetic optim.S-a realizat pagina de web a proiectului. S-au preparat goetita cu forma aciculara in mediu puternic alcalin la 70 °C, akagaenita cu forma somatoidala (prin hidroliza fortata a FeCl₃ diluat) si hidroxi-hematita (in mediu acid). S-au preparat particule de goetita cu morfologie controlata (aciculara) si dimensiuni variabile utilizand precursori de saruri Fe³⁺ si s-a aratat ca dimensiunea particulelor creste cu timpul de tratament si cu cresterea raportului molar [OH]: $[Fe^{3+}]$ din solutie. Prin oxidarea controlata a sarurilor de Fe²⁺ s-a produs goetita aciculara slab cristalizata si s-a aratat ca dimensiunea particulelor creste cu marirea fluxului de aer in timpul oxidarii controlate. Obiectivele etapei au fost realizate integral.

Activitatea I.1

Descrierea stiintifica si tehnica

In cadrul acestei activitati s-a efectuat un studiu de literatura foarte amanuntit privind prepararea de particule magnetice de $Fe_{16}N_2$ si de compusi oxidici si oxi-hidroxici de fier cu forma aciculara sau elipsoidala care sunt utilizati ca precursori pentru producerea de particule de Fe₁₆N₂. S-au studiat peste 250 de articole si abstracturi (in cazul in care nu avem acces la full text) din care s-au citat peste 80. S-au stabilit conditiile de preparare pentru particulele aciculare sau elipsoidale de precursori oxidici (oxihidroxidici) de fier si conditiile de tratament (flux de gaz, temperatura) la care sunt supuse aceste particule pentru obtinerea particulelor magnetice de Fe₁₆N₂. Distributia foarte ingusta a valorii dimensionilor particulelor monodisperse permite asamblarea lor foarte compacta intr-o structura magnetica macroscopica conducand la un magnet permanent cu o magnetizare specifica mare. In prezentul proiect ideea fundamentala este realizarea de particule de nitrura de fier cu structura martensitica (Fe₁₆N₂) ce prezinta magnetizare la saturatie foarte ridicata si o anizotropie de forma importanta. O anizotropie de forma ridicata permite obtinerea unei corcivitati importante si impreuna cu magnetizarea de saturatie ridicata conduc la un produs energetic (eficienta energetic) mare. Tinand cont de faptul ca anizotropia magneto-cristalina a Fe₁₆N₂ este moderata, singura posibilitate de asigurare a unei coercivitati suficiente pentru realizarea de magneti permanenti cu un produs energetic ridicat o reprezinta forma asimetrica a structurilor magnetice sintetizate. Obtinerea de faza metastabila Fe₁₆N₂ cu morfologie anizotropa utilizand procedee metalurgice implica dificultati experimentale foarte mari si are o rata de implementare scazuta, cel putin intr-un timp rezonabil si cu mijloace materiale relative modeste. Pe de alta parte, obtinerea de particule de nitrura de fier cu structura martensitica $Fe_{16}N_2$ prin metode chimice este fezabila. Particule quasi-sferice de Fe₁₆N₂ cu diametrul de 100 nm au fost obtinute prin reducerea particulelor precursoare de hematita sau maghemita de dimesiuni mai mici (zeci de nanometri) in flux de hidrogen la 500 0 C si ulterior tratarea timp indelungat (100 h) in flux de amoniac la 130 0 C – 150 0 C iar masuratorile magnetice au dat valori ridicate ale magnetizarii de saturatie (M_s) de 225 emu/g si coercivitati H_c de 900 Oe la temperatura ambianta [1] Masuratori pentru particule de Fe₁₆N₂ la 5 K au aratat o magnetizare de saturatie de 234 emu/g si o constanta de anizotropie magnetocristalina de $9.5 \cdot 10^6$

erg/cm³ [2]. Deoarece valoarea coercivitatii de 900 Oe este cauzata doar de anizotropia magnetocristalina, prin utilizarea anizotropiei de forma (in cazul particulelor asimetrice, aciculare sau elipsoidale), valoarea coercivitatii poate creste la peste 3000 Oe iar acest aspect important reprezinta unul din obiectivele urmarite in cadrul prezentului proiect. Coercivitati de pana la 3000 Oe au fost raportate pentru particule core-shell de 20 nm cu miezul de Fe₁₆N₂ si invelis de oxid de fier [3], dar totusi ele prezinta o valoare mai redusa $M_s = 108 \text{ emu/g}$ datorata invelisului nemagnetic. Pentru particule cu diametre mai mari de 200 nm este dificila penetrarea azotului si deci conversia fierului metalic in Fe₁₆N₂ este incompleta, ceea ce conduce la scaderea M_s. Mai mult, pentru particule cu diametrul sub 30 nm stratul de suprafata oxidat sau defectat are o influenta sesizabila datorita cresterii raportului dintre numarul de unitati moleculare Fe₁₆N₂ de suprafata (defectate) / numarul de unitati moleculare Fe₁₆N₂ din volum (cu structura nemodificata) in comparatie cu nanoparticulele de 100 nm. Este de mare importanta evitarea umiditatii si a oxigenului (< 1ppm) in timpul formarii particulelor de Fe₁₆N₂. Calcule de benzi energetice au aratat ca Fe₁₆N₂ este o faza metastabila, dar Cr si Mn in cantitati mici cresc stabilitatea termodinamica [4]. Stabilitatea magnetica si termodinamica creste prin dopajul cu mici cantitati de Ti sau Zr [5]. Pentru obtinerea de particule de $Fe_{16}N_2$ cu magnetizare si coercivitate mare este de mare importanta ca particulele sa aiba marimea si forma foarte asemanatoare (sa fie monodisperse). Proprietatile magnetice rezultate in urma doparii cu Co a fazei a"-Fe16N2 au fost investigate recent (2014) de Masubuchi et al. si s-a gasit ca prin nitrurarea in flux de NH3 (si absenta aerului) a unui oxid mixt (Fe1-xCox)3O4 redus in prealabil cu H₂ la 400 °C la un aliaj de tip Fe_{1-x}Co_x, magnetizarea este superioara comparativ cu faza Fe₁₆N₂ fara dopaj de Co [6].

Substitutia Co in nanoparticule Fe-Co aciculare a fost gasita benefica pentru imbunatatirea proprietatilor magnetice [7]. Pozas et al. a obtinut particule aciculare Fe-Co cu lungimea de 70 nm si raport L/D ~ 5, prin reducerea nanoparticulelor de goetita dopata cu Co, cu valoare medie de camp hiperfin de 36.0 T, mai mare decat cea pentru Fe nedopat (34.0 T, la 4.2 K); la cresterea continutului molar de Co de la 9% la 20% H_c creste de la 1460 la 1750 Oe, iar M_s creste de la 110 la 125 emu g⁻¹ [7]. Desi magnetizarea de saturatie M_s scade cu continutul de silice ce acopera particulele de α-Fe₂O₃ reduse in hidrogen, Iwasaki et al. folosesc silicea sau alumina ca mediu de acoperire pentru nanoparticulele magnetice, intrucat previn sinterizarea pulberii de FeOOH la temperaturi inalte (823 K), cand prin deshidratare rezulta Fe₂O₃ acicular de lungime ~350 nm. Reducerea in flux de H₂ si apoi oxidarea controlata (5·10⁻⁶ m³·s⁻¹, 338K, 0.5 mol% O_2 – 99.5 mol. % N_2) conduce la nanoparticule metalice aciculare magnetice de tip core (α-Fe)-shell (Fe₃O₄, spinel, produs prin oxidarea controlata), cu valori mari $H_c = 1350 - 1425$ Oe [8]. Un review recent al Teja et al. puncteaza faptul ca nanoparticulele de oxid de Fe mai mici de 20 nm au comportament superparamagnetic la temperatura camerei, deci nu sunt utile pentru realizarea de magneti permanenti sub aceasta dimensiune [9] [10] [11]. Reducerea γ -Fe₂O₃ preponderent acicular (D=40 nm, L/D =8) la Fe metalic se poate face in flux de hidrogen (reducerea are loc in trepte, se formeaza mai intai Fe₃O₄, putin FeO si apoi α -Fe) la 600 °C (cand reactia e completa). Particulele de α -Fe au forma cilindrica (D-100 nm, L/D=1.7) si prezinta doua campuri hiperfine de 33.1 si 30.2 T [12]. O varianta modificata a reducerii in flux de hidrogen pleaca de la particule microporoase de goetita (L=400 nm, D=25 nm) acoperita cu silice (strat subtire, 0.4 nm), descompusa termic la hematita acoperita de silice, apoi tratata cu H_2 (g), obtinandu-se o faza de Fe acicular cu anizotropie de forma crescuta, avand coercivitatea de 1530 Oe. [13]

Modelul LaMer explica formarea particulelor monodisperse intr-o solutie omogena. Cand concentratia solutiei precursoare (c) atinge nivelul critic pentru nucleere (c_{min}^{nuc}) (prin furnizarea din exteriorul sistemului de solutie concentrata sau prin cresterea concentratiei in urma proceselor fizicochimice din sistem) imediat incepe nucleerea din solutie a germenilor (Fig. 1). Datorita echilibrului dintre viteza de generare a speciilor ionice dizolvate in solutie si viteza de consumare a acestor specii ca urmare a nucleerii germenilor, apare un maxim al concentratiei speciilor ionice dizolvate in solutie, c_{crit} . Cu cresterea timpului curba descreste ca urmare a cresterii consumului de specii ionice dizolvate pentru cresterea germenilor si atinge din nou nivelul critic pentru nucleere, c_{min}^{nuc} . In acest moment se termina etapa de nucleere. Ulterior, concentratia speciilor dizolvate in solutie continua sa scada datorita cresterii germenilor deja formati. Separarea in timp intre etapele de nucleere si de crestere conduce la **formarea de particule monodisperse**. Numarul final de particule monodisperse este determinat numai in etapa de nucleere si ramane constant in etapa de crestere

Fig.1. Diagrama LaMer care explica procesul de formare a particulelor monodisperse, unde c_s este concentratia de echilibru a speciilor dizolvate in echilibru cu precipitatul depus si c_{min}^{nuc} este concentratia critica la care incepe nucleerea. Regiunile de la stanga la dreapta corespund la: prenucleere (generarea de specii ionice in solutie), nucleerea germenilor si respectiv la cresterea grauntilor in solutie.

Cand concentratia speciilor ionice dizolvate $c = c_{crit}$, se atinge starea stationara intre rata de furnizare de specii ionice dizolvate in solutie (R_S),

rata de consumare de specii ionice din solutie prin nucleere (R_N) si rata de crestere a grauntilor din germeni (R_G) conform ecuatiei (1):

$$\mathbf{R}_{\mathrm{N}} + \mathbf{R}_{\mathrm{G}} - \mathbf{R}_{\mathrm{S}} = \mathbf{0} \tag{1}$$

Aceasta ecuatie bazata pe conservarea masei in sistemul solutie/ specii dizolvate / germeni (graunti) poate fi scrisa in functie de numarul de germeni stabili generati conform ecuatiei (2):

$$_{+}(dn_{+}/dt) + (dv_{+}/dt)n_{+} - QV_{m} = 0$$
 (2)

unde v_+ este volumul particulei minime dintre germenii stabili, (d v_+ /dt) este rata medie de crestere a volumului pentru germenii stabili, Q este rata de furnizare de specii ionice dizolvate in solutie iar V_m este volumul molar mediu al solidului. La momentul in care curba din Fig. 1 atinge maximul atunci $v_+ = v_+^0$. Daca pesupunem in ecuatia (2) rata de furnizare de specii ionice dizolvate $Q = Q_0$ constanta in timpul perioadei scurte de nucleere si (d v_+ /dt) aproximativ constant ca o medie temporala in cursul scurtei perioade de nucleere, atunci numarul de germeni stabili n₊ devine conform ecuatiei (3):

$$n_{+} = (Q_{0}V_{m}/(dv_{+}/dt)) [1 - \exp((-dv_{+}/dt)/v_{+}^{0})]$$
(3)

Daca in ecuatia (3) extrapolam la timpi mari $t = \infty$ se obtine numarul final de particule:

n.

$$\tilde{v} = Q_0 V_m / \left(\frac{dv_+}{dt} \right) \tag{4}$$

adica numarul final de particule monodisperse este proportional cu rata de furnizare de specii ionice de catre solutia precursoare (Q_0) si invers proportional cu rata de crestere a volumului germenilor stabili generati in etapa de nucleere (dv_+/dt) . In concluzie, daca se doreste controlul marimii medii a particulelor formate uniform in solutie atunci trebuie controlati acesti doi parametrii. Astfel, Q_0 poate fi controlat prin ajustarea cantitatii de specii ionice dizolvate intr-un sistem inchis, prin furnizarea de specii dizolvate din exteriorul sistemului, prin modificarea pH-ului sau a temperaturii iar rata de crestere a volumului germenilor poate fi controlata prin adaugarea de aditivi cu capacitati adsorbante sau solubilizante si prin schimbarea pH-ului sau a temperaturii. Daca generarea in sistemul inchis sau alimentarea din exterior cu specii ionice dizolvate in solutie este prea rapida si se termina inainte de precipitarea speciilor ionice dizolvate atunci nu poate fi atins echilibru intre furnizarea si consumarea lor prin germinarea si cresterea particulelor. Acest lucru se intampla de obicei atunci cand este necesara o perioada lunga de timp pentru inceperea nucleerii, dupa generarea completa a speciilor ionice precursoare in solutie. Nucleerea se va termina prin reducerea supersaturarii solutiei datorata consumarii speciilor dizolvate. Totusi, particule monodisperse pot fi obtinute in aceasta situatie atat timp cat concentratia solutiilor de precursor este suficient de mica. Controlul marimii particulelor intr-un astfel de sistem poate fi obtinut prin controlarea ratei de crestere a germenilor nucleati iar efectul nucleerii simultane independente este mic in afara de cazul in care supersaturarea este partial redusa de alte mecanisme cum poate fi precipitarea compusilor intermediari. Majoritatea proceselor de tip hidroliza fortata pentru precipitarea particulelor de oxizi sau oxi-hidroxizi metalici prin maturarea solutiilor apoase acide de saruri metalice la temperaturi inalte se incadreaza in tipul prezentat aici. Acest proces apare datorita faptului ca hidro-oxilarea ionilor metalici in solutiile apoase este foarte rapida si cu raspuns reversibil rapid la schimbarea pH chiar la temperatura ambianta astfel incat solutia precursoare este formata imediat ce o sare metalica se adauga in apa. De exemplu, o solutie diluata apoasa acida de 0.002 M FeCl₃ maturata la 100 ⁰C pentru cateva zile duce la formarea de particule monodisperse de hematita (α -Fe₂O₃). Formarea hematitei este puternic accelerata de adaugarea de germeni de hematita. Prin ridicarea temperaturii solutiei nu este influentata hidro-oxilarea sau hidroliza ionilor metalici ci procesul de depunere al complecsilor hidroxilici. In cazul acestui sistem particular s-a observat ca precipitarea de particule aciculare de akaganeit (β -FeO(OH)) ca produs intermediar care recristalizeaza in hematita apare in prima perioada a maturarii solutiei si concentratia complecsilor hidroxilici scade la jumatate din valoarea initiala. Acest aspect poate favoriza separarea temporala intre procesele de nucleere si crestere a germenilor de hematita ceea ce va conduce la formarea de particule monodisperse de hematita intrucat nucleerea germenilor de hematita apare mai ales simultan cu precipitarea akaganeitei in etapa foarte de inceput a reactiei, atunci cand concentratia complecsilor hidroxilici este cea mai mare.

Goetita (*a*-FeO(OH)) are structura orthorombica, grup cristalin Pnma, a=0.9965 nm, b= 0.30215 nm, c= 0.4608 nm. Fiecare ion de Fe este inconjurat de trei O³⁻ si trei OH⁻ formandu-se astfel octaedre de tip FeO₃(OH)₃ care constituie structura. Lanturi duble de astfel de octaedre care au o muchie comuna sunt dispuse de-a lungul directiei cristalografice [100]. Goetita poate fi sintetizata fie utilizand saruri de Fe³⁺ fie saruri de Fe^{2+} . Pentru sistemele utilizand saruri Fe^{3+} (e.g. $\text{Fe}(\text{NO}_3)_3$, FeCl_3 , $\text{Fe}_2(\text{SO}_4)_3$), goetita poate fi formata pe o scara larga de valori de pH. Metodele de sinteza pot implica atat mediu acid cat si alcalin. In mediu alcalin, sinteza presupune pastrarea ferihidritului proaspat format (obtinut prin tratarea unei saruri de Fe³⁺ cu o baza) intr-un mediu cu pH ridicat (peste 12) pentru un interval intre 48h - 170 h. In mediu acid, (pH=1-2) precipitarea goetitei este mult mai lenta (luni de zile la temperatura camerei) si din acest motiv obtinerea goetitei in conditii acide este putin utilizata. Atat goetita cat si hematita se pot forma din ferihidrit. In conditii alcaline, la temperaturi mai scazute $< 70^{\circ}$ C si valori ale pH > 12 se formeaza de preferinta goetita si nu hematita. Sinteza goetitei pornind de la saruri de fier bivalent (Fe²⁺) precum Fe(SO₄), FeCl₂, implica hidroliza prin oxidare controlata a sarurilor de Fe²⁺. Solutiile apoase initial incolore de FeSO₄ isi schimba culoarea cu avansarea procesului de oxidare, precipitatul initial fiind rugina verde ("green rust"), care isi schimba culoarea pe masura avansarii procesului de oxidare. In cazul hidrolizei oxidative a sarurilor de Fe²⁺, diferiti oxi-hidroxizi sau oxizi de fier pot fi produsi (goetita, lepidocrocita, feroxihita si magnetita) si de aceea este necesar un control foarte riguros al ratei de oxidare, al pH si al naturii aditivilor (cationici sau anionici) utilizati. Prezenta carbonatilor (e.g. bicarbonatul de sodiu) in proportie $[HCO_3]/[Fe] = 1.5 \div 2.0$ favorizeaza formarea goetitei si evita formarea lepidocrocitei. La viteze foarte mari de oxidare se poate forma si lepidocrocitul. Cristalinitatea goetitei care se obtine prin dizolvarea $FeSO_4$ este mai buna decat cea a goetitei obtinuta prin dizolvarea $FeCl_2$. Goetita pura poate fi obtinuta in conditii alcaline la pH > 12 si temperatura medie (4 \div 70 °C). Forma uzuala in care se obtine goetita este aciculara. La valori foarte ridicate ale pH (> 13) se obtine goetita aciculara foarte lunga si subtire, iar la valori mai reduse ale pH se formeaza ace mai scurte si mai groase [14, 15]. Goetita formata prin oxidarea FeSO₄ sau FeCl₂ la temperatura ambianta este tot aciculara dar in general este mai slab cristalizata si prezinta structura policristalina la valori mari de pH (13- 13.5) [16]. La valori mai reduse ale pH (pH = 11.3) goetita este preponderant monocristalina. Structuri policristaline se obtin deasemenea la temperaturi mai scazute. Structura policistalina a goetitei obtinute pornind de la sarurile Fe²⁺ poate fi transformata in structura monocristalina prin tratament hidrotermal sub presiune la temperatura de 180 °C [17]. De obicei, in timpul formarii goetitei, in functie de parametrii utilizati se poate forma un amestec de goetita si hematita. La valori ale pH > 12.2 goetita este de forma aciculara. La valori ale pH<11 se formeaza si hematita impreuna cu goetita. Goetita poate fi recunoscuta usor in timpul reactiilor datorita culorii specifice galben-ocru, spre deosebire de hematita care este rosu deschis. Concret, goetita (α -FeO(OH)) se poate obtine prin precipitarea unei solutii concentrate de Fe³⁻¹ $(Fe(NO_3)_3)$ cu anioni hidroxil HO⁻ (solutie KOH 5M) la valori foarte ridicate de pH (pH>12), suprimand astfel obtinerea altor tipuri de oxizi de fier. Dupa precipitarea ferihidritului, amestecul de reactie se dilueaza la 2L cu apa bidistilata si se supune unui tratament hidrotermal la 70 °C intr-un vas inchis de PP (PP=polipropilena) pentru 60h. In timpul tratamentului se formeaza o suspensie voluminoasa de culoare galbena, semnaland prezenta goetitei ca produs de reactie. In urma spalarii succesive si a uscarii la 50 °C se obtine o cantitate de goetita corespunzatoare unui randament global de peste 90% [18]. De asemenea, incalzirea la 70 °C a unor solutii de Fe(NO₃)₃ sau FeCl₃ relativ diluate (0.1 M) conduce la obtinerea, in randament de sub 20%, a unei goetite de Fe de cristalinitate medie. Randamentul mic al reactiei se

datoreaza valorii foarte scazute a pH-ului, ce rezulta in urma hidrolizei acide a sarurilor de Fe^{3+} (Fe^{3+} este acidul conjugat unei baze slabe, greu solubile de $Fe(OH)_3$, si prin urmare reactioneaza cu apa formand ionii de hidroniu H_3O^+ responsabili de valoarea scazuta a pH-ului, pH=-log₁₀[H₃O⁺]). In solutie apoasa, echilibrele ce trebuie considerate pornesc de la reactia de hidratare a cationului Fe³⁺ (ecuatia 5), urmata de hidroliza propriu-zisa a aqua-cationului complex [Fe(H₂O)₆]³⁺_(aq) format (ecuatia 6):

$$Fe^{3+}(aq) + 6 H_2O(l) \rightarrow [Fe(H_2O)_6]^{3+}(aq)$$

$$Fe^{(H_2O)_3} + H_2O(l) \rightarrow [Fe(H_2O)_6]^{3+}(aq) + H_2O^{+}(aq)$$
(5)

$$[Fe(H_2O)_6]^{3+}_{(aq)} + H_2O(l) \rightarrow [Fe(H_2O)_5(OH)]^{2+}(aq) + H_3O^+(aq)$$
(6)

Hidroliza $[Fe(H_2O)_6]^{3+}_{(aq)}$ dovedeste caracterul ridicat de acid Lewis al Fe³⁺. Tratamentul oxidativ al unei solutii de FeCl₂ la temperatura camerei cu aer produce in cateva ore un precipitat galben de goetita. In sinteza s-a folosit o solutie tampon de NaHCO₃ pentru a asigura un pH relativ constant [18]. Oxidarea la cald a unei solutii de Fe²⁺ (FeSO₄) cu o solutie de NaOCl/Na₂CO₃ conduce de asemenea la o goetita slab cristalizata [19]. Un proces de durata (6 luni) presupune dializa la temperatura camerei a unei solutii $Fe(NO_3)_3$ cu apa bidistilata, intr-o solutie slab acida (pH = 5). Din reactie rezulta un amestec polimeric (ce se separa prin cromatografie de gel), si particule uniforme, alungite ("rod-like") de goetita [20]. Un alt proces de obtinere a unei goetite aciculare implica reactia la 85 °C a unei solutii de sulfat feric Fe₂(SO₄)₃ intr-o solutie tampon de acetat de sodiu CH₃COONa (la pH = 6), sub o atmosfera inerta (N₂), timp de 2 h. Forma goetitei obtinute este de buchete aciculare, cu dispunere radiala dintr-un punct central [21]. Oxalatul de Fe(II) a fost folosit de Atkinson in 1976 pentru a obtine goetita in decurs de 2 saptamani, in mediu bazic (NaOH/Fe(C_2O_4)₂ = 2/1), prin oxidarea lenta cu O_2 atmosferic [22]. Oxi-hidroxizii de Fe pot suferi o interconversie termala. Schwertmann si Taylor au aratat ca incalzind lepidocrocitul (γ-FeO(OH)) la 70 °C pentru 24h intr-o solutie 1M de KOH se obtine goetita [23]. Conversia ferihidritului precipitat la pH=8, intr-o solutie tampon la pH=8 (obtinuta dintr-o solutie de 0.05 M NaHCO₃ in prezenta cisteinei, intr-un raport molar cisteina/Fe = 1.1) la 70 °C pentru 60 h duce la formarea goetitei. Adaosul de cisteina produce inchiderea la culoare a ferihidritei si formarea simultana a unui compus intermediar ce prezinta in difractia de raze X (XRD) reflectii bazale la 1.04 si 0.504 nm. Acest compus intermediar se transforma intr-un precipitat galben de goetita cristalina, monodispersa (diametrul sub 100 nm) [24]. Morup si Glasauer au aratat ca prin hidroliza lenta a unei solutii stoc 0.7 M de $Fe(NO_3)_3$ la un raport OH/Fe = 2 (pH = 1.3-1.7), timp de 51 de zile la temperatura camerei, se obtin cristale mici, aciculare, de dimensiuni aproximative de 24 x 12 x 4 nm [25, 26]. Atkinson a aratat ca prin maturatia unei solutii de $Fe(NO_3)_3$ partial neutralizate, la temperatura camerei, urmata de hidroliza produsilor la pH~12 si tratament la o temperatura de 62 °C, se formeaza de asemenea goetita [27]. Un alt raport ce indica obtinerea goetitei dateaza din 1938, cand Nitschmann a obtinut goetita prin oxidarea la 50 °C a unei solutii de FeSO₄, solutie ce continea fire de Fe si graunti de cristalizare de lepidocrocit [28]. Avantajul mare pe care il prezinta goetita pentru formarea de particule cu anizotropie magnetica de forma ridicata il reprezinta faptul ca se obtine ca particule de forma aciculara. Ocana si Moralez raporteaza in 2002 obtinerea de nano-goetita monocristalina cu diametrul intre 80-200 nm si forma alungita (raport axial 5-8), prin oxidarea FeSO₄ in prezenta unui tampon de Na₂CO₃, (goetita de 80 nm s-a obtinut la un raport $CO_3^{2^2}/Fe^{2^4}$ ~ 3, $[Fe^{2+}]=0.075$ mol/L, debitul de aer necesar oxidarii este de 2 L/min) [29]. Zhang a obtinut nanobare de α-FeOOH de 50 nm diametru si 1 µm lungime printr-o sinteza hidrotermala folosind CTAB (bromura de cetiltrimetilamoniu) ca agent de templare, CH₃COOH drept solvent, iar ca sursa de Fe^{3+} , Fe(NO₃)₃.9H₂O; tratamentul termic la 250 °C ulterior conduce la transformarea α -FeOOH in α -Fe₂O₃[30]. Influenta maturarii in mediu puternic alcalin a α -FeOOH acicular si monodispers (L=250-300nm, D~70 nm) a fost studiata de Krehula si Music, la 160 °C, folosind [(CH₃)₄N]OH ca agent de precipitare; cresterea s-a facut perpendicular pe axa cristalografica c, datorata unitatilor $[Fe(OH)_4]$ eliberate la dizolvarea particulelor mici de α -FeOOH (Ostwald ripening), iar campul magnetic hiperfin s-a modificat de la 35.3 T (2h tratament) la 37.1 T (168 h maturatie)[31]. Sinteza oxizilor de Fe in prezenta unor aditivi cationici metalici (Rh³⁺) influenteaza morfologia α-FeOOH obtinut (particule monodisperse, aciculare); sinteza are loc in mediu puternic alcalin, obtinandu-se nanofire de α -FeOOH de 150-200 nm lungime, cu un procent de Rh³⁺ incorporate in retea, substitutia Fe-per-Rh facandu-se usor datorita diferentei mici (~3%) intre razele ionice Fe³⁺ (0.454 Å) si Rh³⁺ (0.665 nm) [32]. Nanostructuri 1-D de oxizi de fier se pot obtine prin tratament hidrotermal la 160 °C (24h) din precursor FeCl₃.6H₂O in prezenta 1.2propandiaminei, obtinandu-se nanobare uniforme de ~50 nm diametru si cateva sute (400-700) nm lungime [33]. Variind raportul HO/Fe de la 0.05 la 0.35, Nunez et al. au reusit sa obtina goetita aciculara omogena si sa controleze nivelul de supersaturatie al sistemului si implicit lungimea particulelor (pana la 250 nm lungime si raport mare L/D), printr-un process de oxidare a $FeSO_4$ in doi pasi (in primul formandu-se particulele primare, al doilea pas fiind unul de crestere) [34]. Juang et al. a obtinut o goetita cu suprafata specifica mare $(153 \text{ m}^2/\text{g})$ folosind un raport molar OH/Fe de 9/1 la finalul titratii rapide a Fe(NO₃)₃ cu HO⁻, urmat de maturare la 60 °C, 60h; studiul a pus in evidenta nevoia controlarii vitezei de titrare a ionilor Fe^{3+} cu HO⁻ in reactia de obtinere a α -FeOOH (goetita) [35]. Se obtin particule de goetita cu raportul L/D intre 2.5 si 30, dar majoritate au acest raport intre 4.6 – 6.6. Concentratia [FeCl₃] poate fi variata in limite largi (0.05 - 0.7 M). Morfologia particulelor obtinute este fie de nanobare, fie de nanopanglici, particulele avand lungimea de sute de nm, diametru intre 74-82 nm si avand character antiferomagnetic – similar β -FeOOH amorf. [36]. Particule de FeOOH au fost obtinute si cu orientari diferite, avand forma aciculara (D=30 nm, L= ~1 µm), formand conglomerate in forma de stea iar folosirea Co^{2+} a condus la particule somatoidale (D=20 nm, L=150 nm). Sinteza a pornit de la FeSO₄ si FeCl₃-precursori de Fe cu valente 2 si 3, uree (NH₂)₂CO, sub reflux la 70 °C pentru 1h, urmat de tratament hidrotermal la 90-95 °C 18h [37]. α-FeOOH cu morfologie controlata a fost sintetizat de Raditoiu et al. [38], care au obtinut goetita uniforma, aciculara (~35 nm din TEM, ~25 nm folosind ecuatia Scherrer) prin tratamentul hidrotermal in 2h, la 145-155 °C, din FeSO₄ si oxidant (peroxodisulfat de amoniu, (NH₄)₂S₂O₈, raport molar Fe(II):S₂O₈²⁻=1:1), in prezenta unui surfactant cationic (CTAB, bromura de cetiltrimetilamoniu) si in mediu tampon (solutie NaHCO₃, pH=6-7). Alternativ, la pH>8 sau la temperatura de 180 °C s-a obtinut maghemita respectiv hematita [38]. Lepidocrocitul y-FeO(OH)) este ortorombic ca si goetita, grup Bbmm, a=0.3071 nm, b= 1.2520 nm, c = 0.3873 nm. Similar cu goetita, lepidocrocitul este alcatuit din lanturi duble de octaedre Fe(O, OH)₆, dar care sunt dispuse de-a lungul directiei cristalografice [001]. Lepidocrocitul se obtine prin oxidarea unei solutii de Fe²⁺ la pH~7. In acest scop se folosesc solutii tampon. Pentru sinteza selectiva a lepidocrocitului trebuie evitata folosirea carbonatului care conduce la formarea goetitei si a altor anioni precum fosfatii care blocheaza formarea lepidocrocitului. Valoarea pH trebuie sa fie peste 5 pentru a se evita o perioada de oxidare lunga. Formarea magnetitei/maghemitei se poate evita prin mentinerea valorii pH sub 8. Magnetita poate fi recunoscuta usor in timpul coprecipitarii datorita culorii specifice, negre, si a proprietatilor magnetice (este atrasa de magnet). Daca magnetita s-a format, atunci nu mai poate fi indepartata in timpul oxidarii ulterioare a solutiei. Lepidocrocitul poate fi recunoscut prin culoarea specifica portocalie. In general, forma cristalelor de lepidocrocit este alungita, dar nu este totdeauna aciculara. Concret, lepidocrocitul a fost obtinut prin precipitarea unei solutii 0.06 M de FeCl₂ la pH=7 cu NaOH si oxidarea cu aer la un debit de 200 mL/min. pH-ul a fost mentinut la valoarea de ~7 prin adaosul de NaOH, contrabalansand ionii de hidroniu rezultati din hidroliza sarii de Fe²⁺. Reactia se efectueaza la temperatura camerei si se considera completa dupa 3h. Precipitatul se spala si se usuca, obtinandu-se in randament bun cristale aciforme de lepidocrocit [39]. Brauer a aratat in 1982 ca prin precipitarea Fe(OH)₂ din FeCl₂(aq) cu o solutie de hexametilendiamina (urotropina) urmata de oxidarea timp de 3h la 60 °C cu o solutie de NaNO₂ si HCl, se obtine de asemenea lepidocrocitul [40]. O alta metoda de obtinere a lepidocrocitului porneste de la rugina verde obtinuta dintr-o solutie de FeCl₂ la pH 7.5 (tampon folosit: bicarbonatul de amoniu, NH₄HCO₃), urmat de oxidarea cu aer la 50 °C si pH>6.5 timp de 8h. Cristalele de lepidocrocit obtinute de Giovanolli si Brutsch prezinta morfologie aciculara [41].

Descompunerea comparativa (termica) a oxihidroxizilor de Fe (γ -FeOOH – lepidocrocit, α -FeOOHgoetit, Fe₅HO₈.4H₂O – ferihidrit) a fost studiata de Mitov et al., si a condus la α -Fe₂O₃ de morfologii diferite (aciculare sau sferice) in functie de precursorul de Fe utilizat. In vreme ce Fe₂O₃ obtinut din ferihidrit contine grupari HO⁻ chiar si dupa tratament la 623 K iar lepidocrocitul prin de-hidroxilare genereaza maghemita impurificata, goetita pare sa fie cel mai promitator oxihidroxid de Fe pentru prepararea de particule de α -Fe₂O₃ pure cu coercivitate ridicata [42].

<u>Akaganeita (β -FeO(OH)</u>), are structura monoclinica, grup I2/m, a=1.056 nm, b= 0.3031 nm, c=1.0483 nm, β =90,63°. Structura este alcatuita din lanturi duble de octaedre dispuse paralel cu axa *b*. Aranjamentul anionilor este intr-o retea de tip cubic cu volum centrat spre deosebire de dispunerea

compacta hexagonal sau cubica cu fete centrate cum se observa in cazul goetitei, respectiv lepidocrocitului. Din acest motiv akaganeita este mai putin densa decat lepidocrocitul si goetita. Akagaenita se obtine prin hidroliza unei solutii de $FeCl_3$ si nu se poate prepara la valori ale pH > 5. Continutul de anioni de clor ai akagenitei variaza intre 1 - 7 %. Se pare ca anionii de clor stabilizeaza structura akaganeitei deoarece fara prezenta lor akaganeita se transforma in goetita sau hematita. Akaganeita se obtine de obicei in forma alungita. Daca temperatura de reactie creste peste 90°C atunci concomitent cu akaganeita se formeaza si hematita iar daca germeni de goetita sunt adaugati atunci se formeaza goetita concomitent cu akaganeita. Akaganeita mentinuta in lichidul precursor se poate transforma fie in goetita sau hematita la temperaturi suficient de ridicate. Concret, akaganeita se poate obtine dintr-o solutie 0.1 M de FeCl₃ intr-un vas inchis, la 70 °C, timp de 48h. Hidroliza sarii produce un pH puternic acid, care scade pana spre 1.2, concomitent cu formarea unui precipitat galben-maro, specific akaganeitei. S-a constatat ca prezenta anionului clorura este esentiala pentru mersul reactiei in sensul formarii akaganeitei. Metoda produce akaganeita cristalina de forma somatoidala [39]. Paterson si Tait au obtinut akaganeita de froma alungita de bara prin tratarea unei solutii de FeCl₃ la pH=3 timp de cateva zile, dupa o etapa de pre-maturatie la raport HO⁻/Fe³⁺ de 0.75, la temperatura camerei pentru 48h [43]. Hidroliza oxidativa a unei solutii de FeCl₂ produce de asemenea akaganeita [44]. Pollard a demonstrat ca reactia de hidroliza a FeCl₂.4H₂O se poate desfasura la suprafata cristalului, prin contactul sarii de Fe(II) cristalizate cu aer umed si in decurs de cateva luni a obtinut cristale de akaganeita ce au putut fi separate de precursorul netransformat prin spalare [45]. Ishikawa si Inouye au sintetizat akaganeita prin hidroliza unei solutii diluate de 0.1 M FeCl₂ cu uree la 100 °C pentru 15h [46]. Un tratament termic scurt a fost folosit de Nightingale et al [47] si Reeves et al. [48], care au adus la fierbere o solutie de $FeCl_2$ pentru 10 min in prezenta dihidroxietilenglicolului, obtinand cristale hexagonale mari de akaganeita. Reeves a investigat rolul tipului si cantitatii de compus organic adaugat in aceasta sinteza, gasind ca se pot forma numai cantitati limitate de akaganeita, chiar si in cazul folosirii precursorilor organici cei mai indicati, cum ar fi dihidroxietilenglicolul [48]. Yue et al. au realizat un studiu teoretic si experimental al formarii nanobarelor monodisperse de β -FeOOH (akaganeit) pornind de la FeCl₃ ([FeCl₃]=0.025-0.75 M), cu raport axial L/D variabil (D~30nm, L=2-4 µm cand [FeCl₃]=0.75 M; D~50 nm, si L~200 nm pentru [FeCl₃]=0.05 M). Solutiile FeCl₃ concentrate dau D mic, L mare si deci L/Dmare, iar la [FeCl₃]<0.05 M rezulta nanoparticule sferice, in conditii de temperatura moderata (80 °C). Ei au gasit o dependenta clara a morfologiei finale de prezenta anionilor din solutie (NO₃⁻, SO₄²⁻, F⁻, Cl⁻, B⁻), datorita interactiei (slabe sau puternice) cu unitatile FeO₆ din oxihidroxizi. Hematita Fe₂O₃ s-a obtinut prin 2h tratament la 400°C cu viteza de incalzire/racire 5°C /min, iar β -FeOOH a putut fi redus la Fe₃O₄ cu hidrazina N₂H₄, la temperatura camerei [49]. Efectul anionilor fosfat asupra morfologiei β -FeOOH si a α -Fe₂O₃ obtinut in urma tratamentului hidrotermal a fost examinat de Almeida si Brown, care au sintetizat particule cu forme sferice (D=45 nm) si nanobare (120 nm) din precursor FeCl₃, in functie de momentul adaugarii surfactantului in mediul de reactie; prin tratament hidrotermal la 200 °C se formeaza nanobare α-Fe₂O₃ (D=70 nm, L=450 nm), cresterea anizotropica facandu-se prin adsorptia PO_4^{3-} pe planele α -Fe₂O₃ paralele cu axa c; adaugarea PO_4^{3-} dupa ce β -FeOOH precipita impiedica transformarea in α -Fe₂O₃, chiar si la 200 °C [50]. Printr-un control strict al temperaturii, Wei si Nan au reusit controlul morphologic al β-FeOOH, de la fusiform (70°C) la bara (80°C); raportul L/D a putut fi variat de la 6 la 24 folosind concentratii diferite [FeCl₃] (nanobarele au diametrul 20-130 nm, lungimea 0.36-2 µm), iar o morfologie de tip panglica ("nanoribbon") a fost accesibila pentru prima data folosind in sinteza SDS (dodecilsulfat de sodiu), surfactant de tip anionic; sinteza foloseste cantitati echimolare de FeCl₃.6H₂O si uree (0.04 mol) ce sunt dizolvate in apa distilata (40 mL) si tratate hidrotermal la 90°C pentru 24 h [51]. S-a mai aratat ca folosind KCl, NaNO₃ sau NH₄Cl ca electroliti rezulta nanobare (D= 60 nm si L=1.5 μ m) de β -FeOOH (anionii corespunzatori-Cl⁻, NO₃⁻ ocupa nanotunelurile formate de β-FeOOH). Insa KSCN (continand SCN⁻ care, ca si SO₄²⁻, fiind mai voluminos decat Cl⁻, e incapabil sa ocupe siturile din β -FeOOH) si genereaza numai α-FeOOH (nanobare, D=130 nm, L=0.8 μm) [51].

Ferihidritul este precipitatul initial care rezulta din hidroliza rapida a solutiilor sarurilor de Fe^{3+} . Din acest motiv cristalinitatea lui este foarte slaba. Din punct de vedere al difractiei de raze X apare intr-o forma mai ordonata (ferihidrit cu 6 linii) si ca o structura mai dezordonata ce contine numai 2 linii foarte

largi de difractie (ferihidrit cu 2 linii). Structura cristalina este hexagonala. Ferihidritul cu 6 linii se obtine prin hidroliza fortata a sarurilor de Fe³⁺ in conditii puternic acide, la temperatura de 80 ⁰C iar hidroliza la temperatura ambianta si la valori apropiate de pH=7 produce ferihidrit cu 2 linii, mai slab cristalizat. Ferihidritul cu 2 linii se transforma in goetita sau hematita daca este stocat in apa suficient de lung timp si din acest motiv este utilizat ca precursor pentru producerea goetitei sau hematitei. Concret, ferihidritul cu 6 linii se formeaza prin hidroliza Fe(NO₃).9H₂O la 75°C pentru un timp scurt. Solutia isi schimba culoarea din galben in rosu inchis-maro ceea ce indica formarea lanturilor de Fe-OH. Dupa aceea, solutia se raceste rapid. Precipitatul de ferihidrit se obtine ulterior prin freeze drying. Ferihidritul cu 2 linii se obtine din solutie de Fe(NO₃)₃.9H₂O si KOH la pH 7 \div 8. Precipitatul final se separa tot prin freeze drying. Ferihidritul-6-linii se obtine prin adaugarea de cristale nehidrolizate de Fe(NO₃)₃.9H₂O intr-un vas cu apa distilata preincalzita la 75°C, sub agitare continua. Ferihidritul se mai poate obtine fie prin descompunerea termica a pentacarbonilului de fier $Fe(CO)_5$ (pentacarbonilii sunt foarte toxici, se recomanda precautii suplimentare in manipularea carbonililor metalici), fie prin oxidarea rapida a unei solutii FeCl₂ la pH~5 [53]. Schwertmann a obtinut o varietate de ferihidrite intermediare, prin titrarea unei solutii de Fe(NO₃)₃ 0.1 M cu NaOH la pH~7, folosind o viteza de titrare cuprinsa intre $10^{-3} - 10^{-1}$ mmol Fe/min, la temperatura camerei. Morfologia particulelor de ferihidrit nu permite utilizarea lor pentru producerea de magneti permanenti, dar ferihidritul poate fi utilizat ca precursor pentru obtinerea goetitei sau hematitei cu anizotropie de forma ridicata (aciculara sau elipsoidala). In prezenta speciilor de silicat, ferihidritul se transforma foarte lent, in mediu puternic bazic, in goetita si/sau hematita, probabil datorita legaturilor chimice formate intre ferihidrit si silicatul adsorbit pe suprafata lui, ducand la cresterea preferentiala in directia (021) a goetitului. Din acest motiv acoperirile cu silice trebuie efectuate postsinteza [54]. Cornell si Giovanoli au studiat conditiile optime ale sintezei goetitului din ferihidrit, obtinand ca la 70 °C, in medii alcaline diluate, ferihidritul se transforma in goetit intre pH $11.2 \div 14$, pe cand la pH<11.2 se formeaza un amestec de goetita – hematita; cresterea concentratiei sau a temperaturii a permis scaderea pH-ului necesar sintezei goetitului sub 11.2, insa forma aciculara de 50-200 nm s-a obtinut exclusiv la pH>12.2 [55]. In continuare vom descrie pe scurt oxizii de fier, cu referire in special la cei care pot fi obtinuti ca particule ce prezinta anizotropie de forma importanta (e.g. aciculara, elipsoidala) Hematita (Fe₂O₃) are structura hexagonala, grup R $\overline{3}$ c, a=0.5034 nm, c=1.375 nm. Aranjamentul cationilor produce octaedre de tip $Fe(O)_6$. Anionii prezinta o ordonare hexagonal compacta in planul paralel cu (001) conducand la o structura de tip triplet Fe-O₃-Fe ce influenteaza proprietatile magnetice. Fe₂O₃ poate fi sintetizat printr-o mare varietate de proceduri. Cele mai utilizate metode chimice de producere hematitului sunt: 1. Eliminarea apei prin tratamente termice (in vid sau atmosfera controlata sau aer) ale precursorilor de tip oxi-hidroxid conform reactiei 2·FeO(OH) \rightarrow Fe₂O₃ + H₂O

2. Hidroliza fortata a solutiilor de Fe^{3+} care trebuie sa aiba loc la temperaturi relativ inalte (aproape de 100 ^{0}C) si in conditii puternic acide (pH = 1 ÷ 2). In acest caz varietatea tipului de anion si valorile pH pot conduce la particule monodisperse de hematita cu diferite marimi si forme. Caracteristic hematitului este culoarea rosie deschis, care o evidentiaza clar fata de goetita.

3. Transformarea ferihidritului in solutie in timp indelungat sau in conditii speciale incepe prin producerea de ferihidrit cu 2 linii care este convertit in hematita in solutie apoasa printr-un proces de cristalizare la distanta scurta prin care ferihidritul se transforma in hematita. Aceasta transformare are loc in conditii slab acide sau slab alcaline. Pentru a evita formarea goetitei, toate prepararile hematitei trebuie sa aiba loc la temperaturi peste 80 °C sau la temperaturi peste 100 °C in vase sub presiune. Exista de asemenea inhibitori ai formarii goetitei (e.g. aditivi organici). Prin adaosul de citrat de sodiu la temperatura de 80 °C si mentinand valoarea pH= 11 pentru solutia in care se afla precipitatul de ferihidrit se formeaza particule aciculare de hematita [56] cu lungimea in jur de 1 micron. Prin aditia de acid oxalic, la pH = 6.5 si mentinand temperatura la 90 °C pentru un timp suficient de lung se formeaza particule elipsoidale de hematita cu lungimea de 2-3 microni [57]. Prin folosirea diversilor aditivi, temperaturi si valori ale pH se pot obtine particule de hematita cu diverse forme (elipsoidala, cubica, aciculara, sferica, romboedrala, plata, etc.). De obicei particulele de hematita produse prin metode chimice umede contin radicali OH si/sau molecule H₂O in structura (asa numita hidroxi-hematita). Daca hematita este preparata prin hidroliza fortata a FeCl₃ atunci exista cantitati mici de anioni de clor retinuti pe suprafata sau in

interiorul policristalelor, care nu pot fi indepartati total prin spalari. Cantitatea de hematita produsa prin hidroliza fortata descreste cu cresterea pH, adica cu avansarea reactiei de hidroliza si de aceea cresterea temperaturii peste 100°C este benefica pentru un randament bun al reactiei de obtinere a hematitei. Deoarece stabilitatea termodinamica a goetiteti si hematitei in timpul hidrolizei fortate a sarurilor de Fe³⁺ este similara, apare formarea concomitenta a goetitei si hematitei din precursorul de ferihidrit. Prin scaderea temperaturii sub 80 °C devine favorabila formarea goetitei. Formarea goetitei poate fi inhibata prin preincalzirea in etuva a apei pentru dizolvarea sarurilor de Fe³⁺ si a solutiilor inainte de combinarea lor. Prezenta FeCl₃ favorizeaza formarea akaganeitului, dar concentratii de FeCl₃ sub 0.02 M la temperaturi in jur de 100 °C permit totusi formarea preferentiala a hematitei si nu a akaganeitei. Pentru aplicatii practice este importanta obtinerea de particule de hematita de o anumita morfologie si dimensiune (particule monodisperse). Astfel, particule de hematita cu forma aciculara pot fi obtinute din ferihidrita cu 2 linii (0.005 mol Fe) la 80° C in prezenta citratului (0.0001 M la pH = 10 sau 0.01 M la pH=12) [56] sau a maltozei [58]. Particule monodisperse elipsoidale de hematita cu lungimea de 700 nm si diametrul de 80 nm si cu axa mare de-a lungul directiei cristalografice [001] au fost sintetizate utilizand FeCl₃ si Na₂HPO₄.2H₂O in solutie apoasa la 98 ⁰C pentru 7 zile [59]. Proprietatile magnetice la temperatura joasa au fost investigate pentru hematita - nanobare de Zhao et al., prin tehnica SQUID, gasindu-se temperatura tranzitiei Morin de 122 K, temperatura la care, prin aplicarea unui camp de 10 Oe, nanobarele (D=20-100 nm, L=1-2 µm) inregistreaza o scadere brusca a susceptibilitatii magnetice, contrar asteptarilor teoretice iar tranzitia Morin nu se observa la particule de hematita cu diametru D=50-60 nm si lungime L~500 nm [60]. Hematita cu 3 morfologii diferite a fost obtinuta printr-o sinteza hidrotermala intr-un singur pas (fusiform - coercivitate 720 Oe si 1570 Oe la 300 K respectiv 5K), tubular (220 Oe si 1000 Oe la 300 K respectiv 5K) - si circular/cilindric (900 Oe si 1720 Oe la 300 respectiv 5 K), cu rol esential al anionilor [PO₄³⁻] (din (NH₄)₂HPO₄] in cresterea controlata [61]. S-a observat ca tratamentul hidrotermal prelungit mareste dimensiunea particulelor de la 80-120 nm (3h) la 90-150 nm (12h), care apoi devin tubulare (D~100 nm) la timpi mai mari de tratament [61]. Particule de hematita (α -Fe₂O₃, cea mai stabila forma a oxizilor de Fe in aer) cu forma de fus si acoperite de silice (biocompatibilitate crescuta si stabilitate coloidala la pH neutru) au fost investigate de Schurtenberger et al. din punct de vedere al efectului dimensiunii particulelor (semiaxele a si b au valori intre 154-319 si respectiv 69-112 nm, polidispersie 10-25%) asupra proprietatilor magnetice (magnetizare de saturatie $\sigma_s = 0.21-0.32$ A m² kg⁻¹, magnetizare remanenta $\sigma_r = 0.008 \cdot 0.23$ A m² kg⁻¹). M. Reufer et al. [59] au gasit ca, prin acoperirea cu silice, interactia magnetica intre subunitati se schimba iar coercivitatea H_C fie creste (in cazul particulelor mai mari cu structura compacta produse conform metodei adaptate dupa Matijevic et al. [62] care consta in hidroliza fortata a FeCl₃ la temperatura inalta in prezenta HNa₂PO₄.2H₂O), fie scade considerabil, in functie de metoda de sinteza (in cazul particulelor mici, sub 25 nm si poroase, cu raport L/D mare si volum mic produse conform metodei lui Ocana et al. [63], ce foloseste $Fe(ClO_4)_3$, NaH₂PO₄.H₂O si uree pentru a modifica pH-ul initial al solutiei). R. Ramesh et al. [64] au sintetizat nanobare cu structura hexagonala de hematita (α -Fe₂O₃) prin metoda micelelor inversate, folosind drept surfactant CTAB (bromura de cetiltrimetilamoniu), dupa calcinare la 300°C; diametrul nanobarelor obtinute este de 30-50 nm, iar lungimea 120-150 nm, acestea avand comportament slab feromagnetic [72]. Liu et al. au sintetizat de asemenea α -Fe₂O₃, insa folosind un sistem binar EG(etilenglicol)-H₂O, lipsit de surfactant, pornind de la un precursor de Fe³⁺(FeCl₃.6H₂O) si obtinand particule alungite cu magnetizare de saturatie 0.44 emu/g si coercivitate ridicata [65]. Zhu et al. au sintetizat recent particule monocristaline, monodisperse de α -Fe₂O₃ (faza ortorombica) prin metoda asistata de EDA (etilendiamina), acestea avand forma de nanobare netezi (obtinute conform fenomenul de maturatie Ostwald ripening) cu diametru 80 nm si lungime de 400 nm; EDA functioneaza ca un chelator pentru cationii de fier, controland morfologia. In lipsa EDA, singura faza obtinuta a fost β -FeOOH [66]. Temperatura tratamentului [67], conditiile specifice [68, 69] si cristalinitatea materialelor precursoare [70] determina proprietatile magnetice ale α -Fe₂O₃ obtinut dupa descompunere. In plus, morfologia

[70] determina proprietatile magnetice ale α -Fe₂O₃ obtinut dupa descompunere. In plus, morfologia nanoparticulelor de α -Fe₂O₃ obtinute prin hidroliza FeCl₃ (0.01-0.05 M) la 120°C in prezenta agentilor surfactanti cationici (CTAB) a putut fi controlata in directia formarii de nanoromboedre (pentru conditii de reactie [FeCl₃]=0.01 M, [CTAB]=0.04 M s-au obtinut obtin particule cu latura de ~60 nm) [71]. Pentru

 $[FeCl_3]=0.03$ M s-au obtinut nanobare cu D=20 nm si L=40-80 nm iar pentru ($[FeCl_3]=0.05$ M, [CTAB]=0.04 M rezulta nanocuburi cu latura de 220-250 nm[71]. Ramesh et al. a sintetizat, folosind surfactant cationic (CTAB) si calcinare la 300 °C, nanobare α-Fe₂O₃ de D=30-50 nm si L=120-150 nm, cu proprietati feromagnetice slabe: Ms=0.6 emu/g, coercivitate 25 Oe si remanenta de 0.03 emu/g [72]. **Magnetita** (Fe₃O₄) este o structura spinelica inversa cubica, grup Fd3m, a=0.839 nm de tip Fe²⁺Fe₂³⁺O₄ ce contine atat ioni Fe² cat si ioni Fe³⁺ in structura si din acest motiv nu este stabila termodinamic in atmosfera. Structura consta dintr-un amestec de straturi octaedrale / tetraedrale orientate de-a lungul axei [111]. Ionii bivalenti de fier sunt dispusi pe pozitiile octaedrale in timp ce ionii trivalenti sunt dispusi atat pe pozitii tetraedrale cat si pe cele octaedrale. Pentru cristalele de magnetita din roci, viteza de oxidare datorita contactului cu atmosfera este suficient de mica pentru a nu afecta semnificativ structura. Totusi, cristalele_de magnetita obtinute in laborator de dimensiuni mici, daca nu sunt protejate importiva oxidarii prin acoperire cu pelicule protectoare (siloxanice, polimerice, etc.), se oxideaza in timp. Metodele de producere a magnetitei sunt: 1. Oxidarea partiala controlata a unei saruri Fe²⁺ dizolvata in solutie in conditii alcaline la 90 °C cu ajutorul unui agent oxidat, KNO₃. In acest caz trebuie luate precautii speciale pentru evitarea contactului vasului de reactie cu aerul in timpul proceului de formare a magnetitei si deasemenea solutiile utilizate trebuie barbotate cu azot pentru eliminarea O₂ dizolvat. 2.Precipitarea unui amestec de solutii de saruri de Fe^{3+} : Fe^{2+} in raportul 2:1. Reactia are loc la pH= 9 ÷ 10 si temperatura ambianta. In general magnetita obtinuta prin aceste 2 metode are forma cubica sau sferica, cu cristale de diferite dimensiuni. 3. O alta cale de obtinere a magnetitei o reprezinta tratamentul precursorilor oxihidroxidici aciculari (e.g. goetita). In prima faza goetita se transforma in hematita la temperaturi de 300÷ 400°C. Prin reducerea hematitei in flux de hidrogen la temperatura de 350°C se obtine magnetita ce mentine forma aciculara a precursorilor oxi-hidroxidici. La temperaturi mai inalte de tratament in flux de hidrogen hematita se reduce la fier. Cho et al. au realizat controlul morphologic al magnetitei aciculare Fe₃O₄ obtinuta prin process glicotermal, prin deshidratarea α -FeOOH la α -Fe₂O₃ si apoi la Fe₃O₄ la 270 °C 6h, morfologia neschimbandu-se de-a lungul schimbarilor de faza. In functie de raportul etilenglicol/apa, s-au obtinut nanobare, nanosfere sau octaedre (in sensul cresterii [H₂O]), dimensiunea nanobarelor putand fi variata (de acest raport) intre 1-2 µm si 100-200 nm [73]. Influenta tariei ionice a fost studiata de Qui, care a obtinut, la [NaCl]=1 M, particule de magnetita cu 1.5 nm mai mici decat in absenta NaCl, si cu o magnetizare de saturatie scazuta (63 emu/g, fata de 71 emu/g in absenta NaCl), scadere pusa pe seama dimensiunilor reduse ale particulelor[74]. Dimensiunea magnetitei este dependenta de aciditatea si de taria ionica a a mediului de precipitare, la pH si tarie ionica mai mare rezultand particule mai mici si cu distributie de dimensiuni mai ingusta [75]. Efectul debitului de O₂ necesar oxidarii $Fe(OH)_2$ format in situ prin precipitarea cationilor Fe^{2+} cu hidroxil HO⁻, a fost studiat de Siles-Dotor, care a gasit ca oxidarea trebuie sa se desfasoare sub Ar, cu flux controlat de O₂; reactia cu O₂ atmosferic genereaza un amestec magnetita(majoritar)/goetita (minoritar, 10-23%)[76]. H. Zeng si S. Sun au studiat variate acoperiri (Au, Au/Ag) ale oxizilor de Fe (Fe₃O₄), si efectul asupra proprietatilor magnetice a fost o crestere de 10 ori a magnetizarii de saturatie, iar coercivitatea creste de la 200 la 800 Oe [77]. Nanoparticule magnetice de Fe₃O₄ s-au obtinut prin metoda solvotermala (180 °C pentru 6h) folosind precursor de FeCl₃.6H₂O si etilenglicol ca si surfactant, in prezenta CH₃COONa (care furnizeaza o tarie ionica ridicata a solutiei) – ce dirijeaza sinteza catre Fe_3O_4 . Desi forma particulelor e sferica (D=326 nm), proprietatile magnetice sunt foarte bune: magnetizare de saturatie 85.4 emu/g, si coercivitatea 80.1 Oe. Se presupune ca rolul NaOAc este acela de a reactiona cu FeCl₃ pentru a forma Fe(OAc)₃, care reactioneaza apoi cu glicolul si rezulta in final Fe₃O₄ [78]. Prin acoperire cu Al₂O₃, Ocana et al. a evitat sinterizarea nanoparticulelor aciculare de Fe obtinute prin reducerea cu H₂ a goetitei continand cationi Al^{3+} (Al(NO₃)₃), dopata in timpul sintezei cu Al^{3+} sau obtinuta prin acoperire postsinteza (heterocoagulare₁). Acoperirea cu Al₂O₃ minimizeaza cresterea cristalelor de α-Fe in timpul reducerii in flux de hidrogen, particulele de Fe prezentand coercivitate crescuta. Cea mai ridicata coercivitate s-a obtinut prin heterocoagularea post-sinteza. Raportul axial de 5 pentru goetita nedopata (G, L=118 nm, D=24 nm) scade la 3 in G(dopata in timpul sintezei) (L=62, D=23 nm) si este conservat la 5 in G(dopata post-sinteza) (L=118, D=24 nm). Reducerea efectuata in absenta Al duce la pierderea morfologiei alungite a particulelor de fier care pierd forma aciculara (H_c=110 Oe, Ms=205 emu/g), pe

cand probele acoperite cu Al₂O₃ se transforma dupa reducere in particule de fier aciculare (H_c =1050 Oe, Ms=120 emu/g) cu excelente proprietati magnetice datorate mentinerii formei alungite a goetitei [79, 80]. Sinteza goetitei a fost investigata de R. Lee Penn et al., care au folosit agregarea orientata pentru controlul cresterii particulelor (controlul dimensiunii particulelor primare) de α-FeOOH (nanobare goetit cu L=90-152 nm, D=10-14 nm, L/D=9.6-12) prin maturare -transformare de faza- la diferite temperaturi (5-70 °C) a nanoparticulelor de ferihidrit (L=3.8 – 6.8 nm, D=3.1-5.5, L/D=1.3)[81]. Efectul pH-ului asupra cineticii de crestere a cristalelor (pH-ul scade odata cu cresterea particulelor) de goetita a fost investigat de acelasi grup; punctul isoelectric al oxi-hidroxizilor de Fe este 7.0-8.5 (PZNPC-point of zero net proton charge), si sinteza se face de obicei la acest pH utilizand Fe(NO₃)₃ 0.4 M, NaHCO₃ 0.48 M, agitare magnetica 10 min la 1 °C, incalzire la 66 °C, tratament cu microunde rapid urmat de racire rapida. S-a concluzionat ca particule mai mici de ferihidrit se obtin cand hidroliza se face la temperatura mica, iar intre pH 4.0-6.0, particulele mici cresc si mai lent cu cresterea pH [82]. Maghemita (Fe_{2.67_0.33}O₄) este o structura spinelica cu defecte foarte apropiata de cea a magnetitei cu desebirea ca, contine numai fier trivalent. Pentru mentinerea neutralitatii electrice a compusului, in acelasi timp cu pastrarea unei structuri cristalografice similara magnetitei, apar vacante cationice care ocupa numai pozitii octaedrale. Structura este tot cubica, grup $P4_332$, a=0.834, foarte apropiata de cea a magnetitei. Maghemita se poate obtine prin tratamente in flux de oxigen a precursorilor oxi-hidroxidici (e.g. incalzirea pentru 2 h a lepidocrocitului la 250°C). Depasirea temperaturii de 250°C in timpul incalzirii lepidocrocitului poate duce la transformarea maghemitei in hematita. Maghemita se poate produce si prin oxidarea magnetitei. O alta metoda de producere a maghemitei presupune procedee chimice: de exemplu o solutie $FeCl_3$ -FeCl_2 in raportul $Fe^{2+}/Fe^{-3} = 9$ este oxidata intr-un vas inchis la temperatura ambianta si pH neutru utilizand un flux de aer. Cresterea ratei de oxidare peste 10 ml/min duce la formarea de lepidocrocit in timp ce rapoarte molare Fe²⁺/ Fe³⁺ diferite duc la formarea de ferihidrit. La temperaturi mai inalte (60°C) se produce in principal maghemita. Maghemita obtinuta prin incalzirea lepidocrocitului mentine structura aciculara a precursorului oxihidroxidic.Particule monodisperse cu forma elipsoidala de maghemita pot fi produse prin formarea de hematita cu forma elipsoidala intr-o prima etapa, apoi conversia hematitei in magnetita prin reducerea in flux de hidrogen la $240 - 400^{\circ}$ C pentru 1÷3 h si apoi oxidarea in aer a magnetitei la magnetita la 240°C pentru 1÷2 h [83]. **Bibliografie**

- 1. S. Kikkawa, A. Yamada, Y. Masubuchi, T. Takeda, Materials Research Bulletin 43 (2008) 3352-3357
- 2. T. Ogawa, Y. Ogata, R. Gallage, N. Kobayashi, N. Hayashi, Y. Kusano, K. Kohara, D. Masaaki, M. Tanako, M. Takahashi, Applied Physics Express, 6(2013) 073007
- 3. E. Kita, K. Shibata, H. Yanagihara, Y. Sasaki, M. Kishimoto, J. Magn. Mag. Mater. 310 (2007) 2411-2415
- 4. Huang, W. Xie, X. Li, J. Magnetism and Magnetic Materials, 364 (2014) 1-4
- 5. A. Tayal, M. Gupta, A. Gupta, M. Horisberger, J. Stahn, Yhin Solid Films, 536(1) (2013) 39-49
- 6. Y. Masubuchi, H. Sato, T. Motohashi and S. Kikkawa, J. Ceramic Soc. of Japan 122(4) (2014) 288-291
- 7. R. Pozas, M. Ocana, M. P. Morales, P. Bonville and C.J. Serna, Nanotechnology 18(2007) 205601
- 8. K. Iwasaki, T. Itoh and T. Yamamura, Materials Transactions, Vol. 46, No. 6 (2005) 1368-1377
- 9. Amyn S. Teja, P.-Y. Koh, Progress in Crystal Growth and Characterization of Materials 55 (2009) 22-45
- 10. R. M. Cornell, U. Schwertmann, The iron oxides: Structure, Properties, Reactions, Occurences and Uses, second ed. Wiley-VCH, Weinheim, 2003
- 11. K. Haneda, A.H. Morrish, Solid State Communications 22(12) (1977) 779-782
- 12. R.J. Pollard, Hyperfine Interactions 40 (1988) 417-420
- 13. T. Sueyoshi, Journal Of Materials Science 22 (1987) 860-866
- U. Schwertmann (1965) Zur Goethit- und Hamatitbildung aus amorphen Eisen(III) hydroxid, Z. Pflanzenern., Dungg, Bodenk. 108:37-45.
- 15. R. J. Atkinson, A. M. Posner and J. P. Quirk , J. Inorg. Nucl. Chem. 30 (1968) 2371-2381
- 16. R. M. Cornell and R. Giovanoli Clays Clay Min. 34 (1986) 557-564
- 17. U. Schwertmann, P. Cambier and E. Murad Clays Clay Min. 33(1985) 369-378
- U. Schwertmann, R. M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization, 2007, Print ISBN: 9783527296699, DOI: 10.1002/9783527613229

- 19. P. H. Duvigneaud and R. Derie, J. Solid State Chem. 34 (1980) 323-333
- 20. (a) J. H. A. Van der Woude and P. L. de Bruyn , Colloids & Surfaces 9 (1984) 173-188; (b) J. H. A. Van der Woude and P. L. de Bruyn Colloids & Surfaces 9(1984) 173-188
- 21. S. Ardizzone and L. Formaro, Surface Tech. 26(1985) 269-274
- 22. R. J. Atkinson, Aust. J. Chem. 29 (1976) 2149-2158
- 23. U. Schwertmann and R. M. Taylor Clays Clay Min. 20 (1972)151-158
- 24. R. M. Cornell and R. Giovanolli Clays Clay Min. 39(1991) 223-232
- 25. S. Morup, M. B. Madsen, J. Franck, J. Villadsen and C. J. W. Koch J. Magn. Mag. Mat. 40 (1983) 163-174
- 26. S. M. Glasauer (1995) Silicate associated with Fe(hydr)oxides. Ph.D. Thesis. Tech. Univ. Munchen, 133 pp.
- 27. R. J. Atkinson, A. M. Posner and J.P. Quirk, J. Phys. Chem. 71(1967) 550-558
- 28. H. Nitschmann, Helv. Chim. Acta 21 (1938) 1609-1618
- 29. R. Pozas, M. Ocana, M.P. Morales, C. J. Serna, Journal of Colloid and Interface Science, 254(1)(2002) 87-94
- 30. H. Zhang , Advanced Materials Research, 239-242(2011) 2327-2330
- 31. S. Krehula, S. Music, Journal of Crystal Growth 310(2) (2008) 513-520
- 32. S. Krehula, S. Music, Journal of Molecular Structure 976 (2010) 61-68
- 33. D. Chen et al. Sci China Phys Mech Astron July (2011) Vol. 54 No. 7: 1190-1199
- 34. N.O. Nunez, M.P. Morales, P. Tartaj, C.J. Serna, Journal of Materials Chemistry, 10(11) (2000) 2561-2565
- 35. R. S. Juang, W.L. Wu, J. Colloid Interface Sci. 249 (2002) 22-29
- 36. M.R. Chowdhury, V. Fester, G. Kale, O. Cespedes, J. Nanopart. Res. 16(5) (2014) 2412
- P.E.Garcia-Casillas, C.A. Martinez-Perez, C.R. Golzales, H.Camacho-Montes, S.A.M. Estrada, I. O.Armendariz, Centr. Eur. J. Chem. 11(3)(2013)358-363
- V. Raditoiu, L. Diamandescu, M. C. Corobea, A. Raditoiu, N. Popescu-Pogrion, C. A. Nicolae, Journal of Crystal Growth 348 (2012) 40–46
- 39. R. M. Cormel, U. Schwertmann, (2004) The iron oxides: Structure, properties, Reactions, Occurrences and Uses, 2nd Edition, Print ISBN: 9783527302741, DOI: 10.1002/3527602097, 2004
- 40. G. Brauer, 1982, Handbuch der praparativen anorganischen Chemie Band 3, F. Enke, Stuttgart
- 41. R. Giovanolli and R. Brutsch, Chimia 28(1974) 188-191
- 42. I.Mitov, D. Panevra, B. Kunev, Thermochimica Acta 386 (2002) 179-188
- 43. E. Paterson and J. M. Tait, Clays Clay Min. 12 (1977) 345-352
- 44. (a) M. Kiyama, T. Takada Bull. Chem. Soc. Japan 45 (1972) 1923-1924; (b) M. Kiyama, T. Akita, S. Shimizu, Y. Okuda and T. Takada, Bull. Chem. Soc. Japan 45 (1972) 3422-3426
- 45. R. Pollard, C.M. Cardile, D.G. Lewis, L.J.Brown, Clay Min. 27(1992) 57-71
- 46. T. Ishkawa and K. Inouye, Bull. Chem. Soc. Japan 45(1972) 2350-2354
- 47. E. R. Nightingale and R. F. Benck, Anal. Chem. 32(1960) 566-567
- 48. N.J. Reeves and S. Mann J. Chem. Soc. Faraday Trans. I. 87(1991) 3875-3880
- 49. J. Yue, X. Jiang, A. Yu, J Nanopart Res 13(2011) 3961-3974
- 50. T, Almeida, M. Fay, Y. Zhu and P. D. Brown, Journal of Physics: Conference Series 241(2010) 012045
- 51. Chengzhen Wei, Zhaodong Nan, Materials Chemistry and Physics 127 (2011) 220-226
- 52. J. M. Bigham, U. Schwertmann, I. Carlson and E. Murad, Geochim. Cosmochim. Acta 54 (1990) 2743-2758
- 53. Z. Karim Clays Clay Min. 32(1982) 334-336
- 54. R. M. Cornell, R. Giovanolli and P.W. Schindler, Clays and Clay Minerals, 35(1) (1987) 21-28
- 55. R. M. Cornell, R. Giovanoli, Clays and Clay Minerals, 33(5) (1985) 42443285
- 56. (a) U. Schwertmann, W.R. Fischer and H. Papendorf, Trans. 9th Int. Congr. Soil Sci., Adelaide, Australia 1(1968) 645-655; (b) U. Schwertmann Nature 232 (1971) 624-625
- 57. W. R. Fischer and U. Schwertmann, Clays Clay Min. 23(1975) 33-37
- 58. R. M. Cornell, R. Giovanolli, Clays Clay Min. 33(1985) 424-432
- M. Reufer, H. Dietsch, U. Gasser, B. Grobety, A.M. Hirt, V. K. Malik and P. Schurtenberger, J. Phys. Condens. Matter 23(2011) 065102
- 60.Y. Zhao, C.W. Dunnill, Y. Zhu, D.H. Gregory, W. KOckenberger, Y. Li, W. Hu, I. Ahmad, and D. G. McCartney, Chem. Mater. 19(2007) 916-921

- 61. C.T.Liu, J. Ma and Y.L.Liu, Sci China Chem 54(10) (2011) 1607-1614
- 62. M. Ozaki, S. Kratohvil and E. Matijevic, J. Colloid Interface Sci. 102(1984) 146-51
- 63. M. Ocana, M.P. Morales and J.C. Serna, J. Colloid Interface Sci., 212(1999) 317-23
- R. Ramesh, K. Ashok, G.M. Bhalero, S. Pounnusamy, and C. Muthamizhchelvan, Cryst. Res. Technol. 45(9) (2010) 965-968
- 65. Liu RongZheng, Zhao YuZhen, Huang RongXia, Zhao YongJie and Zhou HePing, Sci. China Phys Mech Astr. July (2011) Vol. 54 No. 7
- 66. Lu-Ping Zhu, Gui-Hong Liao, Nai-Ci Bing, Xu Zhao, You-You Gu, Materials Letters 65 (2011) 1287-1290
- 67. A.Y. Vlasov, G.V. Loseva, G.S. Sakash, L.S. Solntseva, Zh. Prikl. Spektrosk. Russ. 12 (1970) 1130
- 68. D.G. Klissurski, V.N. Bluskov, Mater. Chem. 5 (1980) 67
- 69. R. Derie, M. Ghodsi, C. Calvo-Roche, J. Thermal Anal. 9 (1976) 435
- 70. S. Goni-Elizalde, M.E. Garcia-Clavel, Thermochim. Acta 124 (1988) 359
- 71. Z. Pu, M. Cao, J. Yang, K. Huang and C. Hu, Nanotechnology 17(2006) 799-804
- 72. R. Ramesh, K. Ashok, G.M. Bhalero, S. Ponnusamy, and C. Muthamizhchelvan, Cryst. Res. Technol. 45(9) (2010) 965 968
- 73. S-B Cho, J.-S. Noh, S-J. Park, D.-Y. Lim, S-H. Choi, J Mater Sci 42 (2007) 4877–4886
- 74. X. Qui, Chin. J. Chem. 18(2000) 834
- 75. W. Jiang, H.C. Yang, S.Y. Yang, H.E. Horng, J.C. Hung, Y.C. Chen, C. Y. Hong, J. Magn. Magn. Mater. 283(2004) 210
- 76. M. G. Siles-Dotor, Bokhimi, A. Morales, M. Benaissa and A. Cabral-Prieto, NanoStructured Materials, 8(6) (1997) 657-673
- 77. S. Sun, H. Zeng, Adv. Funct. Mater. 18(2008) 391-400
- 78. H. Yan, Z. Liping, H. Weiwei, L. Xiaojuan, L. Xiangnoug, and Y. Yuxiang, Glass Physics and Chemistry 36(3) (2010) 325–331.
- 79. N.O.Nunez, R. Pozas, M.P. Morales, P. Tartaj, P. Bonville, A.R.Gonzales-Elipe, A. Caballero, M. Ocana and C.J. Serna, Chem. Mater. 15(2003) 951-957
- 80. R. Pozas, M.P.Morales, C.J.Serna, M. OCana, Bol. soc. esp. Ceram. V., 43 [4] (2004) 796-800
- 81. E. Lee Penn, J. Jasmine, D. M. Gulliver, Journal of Crystal Growth 293 (2006) 1-4
- 82. N. D. Burrows, C.R.H. Hale, and R.L. Penn, Cryst. Growth Des. 13(2013) 3396-3403
- 83. M. Ozaki and E. Matijevic, J. Colloid Interface Sci. 107(1983) 199-203

Activitatea I.2 S-au preparat probe de oxizi si oxi-hidroxizi de fier prin metoda coprecipitarii. S-a pornit de la solutii apoase de saruri de Fe²⁺ (FeSO₄, FeCl₂) si saruri de Fe³⁺ (Fe(NO₃)₃, FeCl₃) si solutie apoasa de KOH. S-au schimbat parametrii (proportii initiale, timp de tratament termic, temperatura), iar in cazul sarurilor de Fe²⁺ s-a utilizat metoda oxidarii controlate prin ajustarea fluxului de aer in timpul tratamentului. Obiectivele activitatii au fost realizate integral. Cele mai importante rezultate obtinute au fost urmatoarele: **1.** In cazul solutiilor apoase 5M Fe(NO₃)₃ + 1M KOH tratate la 70 ⁰C timp de cel putin 48 h s-a format goetita (α-FeO(OH)) cu structura aciculara conform datelor de difractie de raze X (Fig. 2), spectroscopiei FTIR (Fig. 3) si imaginilor de microscopie SEM (Fig. 4)

Fig. 2 Spectru de difractie pentru proba 5M Fe(NO₃)₃ + 1 M KOH 70⁰C/ 48h

Fig. 3 Spectru FTIR pentru proba 5M Fe(NO₃)₃ + 1 M KOH 70⁰C/ 48h

Fig. 2 de difractie prezinta pozitiile 2Theta corespunzatoare goetitei, peakurile sunt relativ inguste, ceea ce arata o structura bine cristalizata cu dimeniunea grauntilor suficient de mare. Spectrul FTIR (probele au fost realizate utilizand metoda standard de dispersare in KBr) indica absorbtiile caracteristice pentru banda $v = 3149 \text{ cm}^{-1}$ corespunzatoare vibratiei de alungire a hidroxilului (OH), doua benzi caracteristice vibratiei de deformare a hidroxilului (OH) in planul (001), $\delta = 890 \text{ cm}^{-1}$ respectiv vibratiei de deformare in afara planului (001), $\gamma = 791 \text{ cm}^{-1}$ si absorbtia de la $\tau = 640 \text{ cm}^{-1}$ care este caracteristica vibratiei simetrice a legaturii Fe-O in planul (010). Imaginile SEM (Fig. 4) indica particule aciculare cu lungimea de pana la 1 µm si diametru sub 100 nm.

Fig. 4 Imagini SEM pentru proba goetita preparata din 5M Fe(NO₃)₃ + 1 M KOH 70⁰C/ 48h

2. S-a pornit de la solutie apoasa de $FeSO_4$ care furnizeaza ionii de Fe^{2+} si solutie de bicarbonat de sodiu (NaHCO₃) ce functioneaza ca buffer de pH. Solutiile au fost barbotate cu azot inainte de amestecare pentru a se indeparta oxigenul dizolvat. Ulterior, solutiile au fost inchise intr-un recipient etans in care poate circula un flux de gaz al carui debit se regleaza. Prin oxidare controlata (temperatura, timp de agitare si flux de oxigen (aer) se controleaza oxidarea Fe^{2+} din solutie si precipitarea particulelor de goetita (α -FeO(OH)) cu diverse dimensiuni si morfologii.

Se observa in Fig. 5 ca faza cristalina formata este tot goetita, dar peakurile de difractie sunt mai largi decat in cazul goetitei preparate din solutii apoase de Fe(NO₃)₃ + KOH, ceea ce inseamna o dimensiune de cristalit mai mica si/sau o structura cristalina cu mai multe defecte. Spectrul FTIR din Fig. 6 prezinta absorbtiile corespunzatoare pentru banda $v = 3212 \text{ cm}^{-1}$ corespunzatoare vibratiei de alungire a hidroxilului (OH) (influentata de micsorarea dimesiunii cristalitului si de defectele din structura), cele doua benzi caracteristice vibratiei de deformare a hidroxilului (OH), $\delta = 890 \text{ cm}^{-1}$ si $\gamma = 791 \text{ cm}^{-1}$ si vibratia de la $\tau = 619 \text{ cm}^{-1}$ care este caracteristica vibratiei simetrice a legaturii Fe-O in planul (010). Si

aceasta din urma scade fata de valoarea corespunzatoare goetitei cu cristalite mari si fara defecte 640 cm⁻¹ Imaginile SEM (Fig. 7) indica particule aciculare, cu lungimea sub 500 nm si diametrul sub 100 nm.

Fig. 7 Imagini SEM pentru proba de goetita preparata din $FeSO_4 + NaHCO_3 30^{\circ}C/48h$

3. In cazul hidrolizei unei solutii diluate de $FeCl_3$ timp de 96 h la temperatura de 70 ^{0}C se formeaza akagaenita (β -FeO(OH)). Figura de difractie (Fig. 8) indica peakuri relative inguste deci cristalitele sunt suficient de mari si structura nu prezinta defecte.

Fig. 8 Spectru de difractie pentru proba obtinuta prin hidroliza solutiei diluate de FeCl₃ la 70 ^oC

Fig. 10 Spectrul FTIR pentru FeCl₃ diluat / 70^oC

Fig. 9 Imagine SEM pentru proba obtinuta prin hidroliza solutiei diluate de FeCl₃ la 70⁰C

Se observa in Fig. 9 ca particulele de akagaenita sunt de dimensiuni mici (lungime sub 200 nm si diametru sub 100 nm) iar forma lor este somatoidala, deci nu sunt aciculare precum goetita. In spectrul FTIR din Fig. 10 banda de la 656 cm⁻¹ corespunde vibratiei legaturii Fe-O iar banda de la 859 cm⁻¹ corespunde vibratiei de deformare a hidroxilului OH⁻

Banda de la 3358 cm⁻¹ corespunde vibratiei de alungire a hidroxilului (OH⁻).

Fig. 11 Spectrul de difractie pentru proba $Fe(NO_3)_3$ /Fig. 12 Spectrul FTIR pentru proba $Fe(NO3)_3$ /
KOH cu raportul molar Fe^{3+} : OH⁻ de 1:3KOH cu raportul molar Fe^{3+} : OH⁻ de 1:3KOH cu raportul molar Fe^{3+} : OH⁻ de 1:3

4. Desi in majoritatea cazurilor s-a obtinut goetita, totusi, pornind de la un amestec $Fe(NO_3)_3 + KOH$ corespunzator unui raport de ioni $Fe^{3+}:OH^-$ de 1:3 conditiile de reactie devin favorabile formarii hematitei (prin descresterea semnificativa a pH). In aceste conditii, particulele precipitate intr-un timp rezonabil de 100 h la 70 °C devin foarte mici, astfel incat separarea lor a fost posibila numai prin centrifugare. Pentru a se obtine particule mai mari in aceste conditii de temperatura si pH este necesar un timp de tratament de saptamani sau chiar luni. Dupa cum se observa in spectrul de difractie din Fig. 11 faza cristalina care se formeaza este hematita (α -Fe₂O₃). Acest lucru este confirmat si de spectrul FTIR din Fig. 12 unde se observa benzile de la 573 cm⁻¹ si 474 cm⁻¹ specifice legaturii Fe-O din hematita. Datorita dimesiunii foarte mici a particulelor si a faptului ca au fost preparate utilizand un mediu apos apare o rezonanta importanta la 1384 cm⁻¹ care este caracteristica ionilor hidroxil (OH⁻). Este posibil ca aceasta absorbtie sa corespunde si unei faze ce contine ioni hidroxil (OH⁻) care este nedetectabila la difractie datorita dimensiunii foarte mici a cristalitelor sau unei amorfizari accentuate a particulelor.

Activitatea I.3

Particulele fine de $Fe_{16}N_2$ cu valori foarte ridicate ale magnetizarii de saturatie stau la baza magnetilor permanenti care vor fi produsi in cadrul prezentului proiect. De aceea, ajustarea proprietatilor magnetice prin producerea de particule de anumite dimensiuni si morfologii, dar si ajustarea concentratiei de particule magnetice si a tipului de agent de legare cu care se formeaza materialul compozit este importanta. Particulele trebuie sa prezinte anizotropie de forma ridicata (forma aciculara sau elipsoidala). Relatia intre factorii de demagnetizare de-a lungul axelor indeplineste: $N_a+N_b+N_c = 1$ (7) De obicei particulele au simetrie axiala, deci $N_a=N_b$ si $N_a = (1-N_c)/2$ conform ecuatiei (7). In general particulele aciculare pot fi aproximate cu elipsoizi pentru care raportul c/a >> 1 si in acest caz atat pentru particulele aciculare cat si pentru cele eplisoidale se poate aplica formula: $N_c = (r^2-1)^{-1} \cdot [r \cdot (r^2-1)^{-1/2} \cdot \ln(r + (r^2-1)^{1/2}) - 1]$ (8)

care se aplica pentru elipsoizi cu axele (c > a) unde r = c/a si care a fost calculata de Osborn [1]. In cazurile extreme c>>a adica r $\rightarrow\infty$ obtinem N_c \rightarrow 0 iar in cazul r=1 (a=c) (elipsoidul devine sfera) conform (7) avem N_a = N_b = N_c = 1/3. In cazul rotatiei uniforme a momentelor magnetice din interiorul particulei energia de interactie cu campul magnetic este descrisa de modelul Stoner-Wohlfarth.

$$E/V = K_1 \sin^2 \theta + \mu_0 / 2 \cdot (1 - 3N_c) M_s^2 \sin^2 \theta - \mu_0 M_s H \cos \theta$$
(9)

unde E/V este energia magnetica pe unitatea de volum, K_1 este constanta de anizotropie magnetocristalina, M_s este magnetizarea de saturatie, H este campul magnetic aplicat, μ_0 este permeabilitatea magnetic a vidului iar θ este unghiul intre directia momentelor magnetice si directia campului magnetic. Din minimizarea energiei (9) se obtine campul magnetic coercitiv

$$H_{c} = 2K_{1}/(\mu_{0}M_{s}) + 1/2 \cdot (1-3N_{c}) \cdot M_{s}$$
(10)

In ecuatia (10) primul termen corespunde contributiei la coercivitate a anizotropiei magnetocristaline $(H_c^{magcrist})$ datorata interactiei intre campul cristalin si momentului de spin cuplat cu momentul cinetic orbital. Al doilea termen corespunde contributiei la coercivitate a formei particulelor magnetice (H_c^{forma}) caracterizata de factorii de demagnetizare diferiti pe diferitele axe cristalografice. Conform modelului Stoner-Wohlfarth, in cazul ansamblului de particule magnetice aflate in neinteractie si care sunt orientate aleator coercivitatea se reduce aproximativ la jumatate $H_c^r = 0.48 \cdot H_c$ fata de ecuatia (10) iar magnetizarea

remanenta in cazul ideal al particulelor magnetice orientate arbitrar si fara interactie mutuala se reduce la jumatate fata de valoarea de saturatie $M_r = 0.5M_s$. Pentru a exista rotatia coerenta, o conditie necesara, dar nu suficienta este ca particula magnetica sa fie monodomeniu. In cazul elipsoizilor cu axa polara mult mai mare decat axa ecuatoriala valoarea dimensiunii critice a monodomeniului magnetic este [2]:

$$D_{sd} = 2 \cdot [6A \cdot (N_c M_s^2)^{-1} \cdot \ln(2D_{sd}/a - 1)]^{1/2}$$
(11)

Unde D_{sd} este dimensiunea monodomeniului magnetic, A este constanta de ridigitate a interactiei de schimb si a este distanta interatomica in domeniul monomagnetic. In cazul particular al fierului dimensiunea monodomeniului magnetic creste de la 12 nm pentru particule sferice pana la peste 100 nm pentru particule aciculare sau elipsoidale cu coeficient de forma (diametru polar / diametru ecuatorial) al elipsoizilor c/a > 7. In cazul Fe₁₆N₂ dimensiunea monodomeniului magnetic este mai mare decat pentru fierul metalic si in consecinta particule elipsoidale sau aciculare de Fe₁₆N₂ cu coeficient de forma ridicat prezinta acest tip de comportare. Totusi, conditia de monodomeniu magnetic nu este suficienta pentru a asigura rotatia coerenta a momentelor magnetice. Atunci cand dimensiunea ecuatoriala a particulelor:

$$D > D_{crit} = 3.65 \cdot (A/\mu_0 M_s^2)^{1/2}$$
(12)

apare o rotire necoerenta a momentelor magnetice in cazul aplicarii unui camp magnetic exterior numita "curling". Aceasta valoare critica D_{crit} este $10\div20$ nm, fiind mult mai mica decat dimensiunea monodomeniului magnetic, in orice caz mai mica decat diametrul ecuatorial al particulei si din aceasta cauza mecanismul de rotire a momentelor magnetice sub actiunea unui camp magnetic exterior este "curling" si in acest caz valoarea campului magnetic coercitiv este conform [3]:

$$H_{c} = 2K_{1}/(\mu_{0}M_{s}) - N_{c}M_{s} + (26,71 \cdot A)/(\mu_{0}M_{s}D^{2})$$
(13)

Din acest motiv valorile campului coercitiv care sunt observate experimental pentru ansambluri de particule aciculare (e.g. fier) prezinta in realitate coercivitati de pana la 1800 Oe, in concordanta cu formula (13) desi valoarea calculata conform $H_c^r = 0.48 \cdot H_c$ si ecuatiei (10) corespunzatoare rotatiei coerente a momentelor magnetice sub actiunea unui camp magnetic aplicat in care neglijam anizotropia magnetocristalina pentru un sistem de particule orientate arbitrar este $H_c^r = 5200$ Oe, deci apare o reducere cu un factor de aproximativ 3. Un alt aspect important il reprezinta efectul interactiei magnetostatice intre particulele magnetice din ansambluri de particule dispersate in liant. A fost observata o reducere a coercivitatii care variaza liniar cu cresterea densitatii puberii dispersate in liant [4]:

$$H_{c}^{"} = H_{c}^{magcrist} + (1 - \rho_{a}/\rho_{0}) \cdot H_{c}^{forma}$$
(14)

Se observa scaderea pana la valori mici ale coercivitatii data de forma particulelor in cazul ansamblurilor de particule magnetice foarte dense (apropiate) care este cauzata de interactia magnetostatica intre diferitele particule magnetice. In cazul mixarii unui liant de densitate pliant cu particulele magnetice (in fiecare particula densitatea materialului magnetic este ρ_0) si fractia volumica (raportul volumic intre $V_{\text{particule}} / (V_{\text{particule}} + V_{\text{liant}}) = f$) se obtine densitatea aparenta $\rho_a = \rho_0 \cdot f$. De exemplu pentru o fractie volumica de particule magnetice in liant f=0.5 coercivitatea datorata formei particulelor magnetice se reduce cu un factor de 0.5 in cazul unei anizotropii magnetocristaline neglijabile. In acelasi timp, datorita unei concentratii mai mici de particule magnetice, ca urmare a dispersarii lor in liant, apare o reducere a $M_s'' = M_s \cdot f$ magnetizarii de saturatie ce poate fi atinsa in mod ideal, M_s: (15)Deoarece urmarim obtinerea unui produs energetic cat mai mare in functie de fractia volumica de particule dispersate in liant dorim sa obtinem maximul functiei (daca neglijam H_c^{magcrist}) si tinand seama ca produsul energetic ~ H_c M_s ~ (1 - f) f atunci valoarea maxima se obtine pentru fractia volumica de particule magnetice in liant $f_{max} = 1/2$ si valoarea maxima a produsului energetic este $\frac{1}{4}$ H_c·M_s. In cazul in care anizotropia magnetocristalina este semnificativa functia de maximizat devine: (10

$$[H_c^{\text{magener}} + (1 - t) \cdot H_c^{\text{forma}}] \cdot t$$

$$f_{\text{max}} = (H_c^{\text{forma}} + H_c^{\text{magerist}})/(2H_c^{\text{forma}})$$

$$(16)$$

$$(17)$$

Conform ecuatiei (10) valoarea campului magnetic coercitiv generat de anizotropia magnetocristalina este maxim 9000 Oe, iar valoarea campului coercitiv generat de forma particulelor pentru un ansamblu de particule orientate arbitrar este maxim 6000 Oe. In practica, valorile obtinute sunt aproximativ 1/4 din valorile maxime obtinute teoretic deci valoarea fractiei volumice particule/liant corespunzatoare maximului produsului energetic este aproximativ 0.85. Cauza reducerii coercivitatii o reprezinta existenta

cu maximul dat de :

mecanimului de rotire a momentelor de tip "curling" la aplicarea unui camp magnetic in locul rotirii coerente a momentelor magnetice considerate in modelul Stoner-Wohlfarth. De asemenea o alta cauza o reprezinta prezenta altor mecanisme de deplasare a domeniilor magnetice generate de defecte in structura Valoarea magnetizarii remanente in cazul fractiei volumice f=0.85 reprezinta M_r^{opt} = cristalina. $0.5 \cdot (0.85) \cdot (230 \text{ emu/g}) = 97 \text{ emu/g}$ iar campul coercitiv al particulelor dispersate in liant este 3000 Oe (considerand o orientare arbitrara a particulelor si luand in considerare f=0.85). Utilizand aceste valori se obtine un produs energetic superior celui obtinut pentru Alnico si MnAl. In cazul in care particulele magnetice sunt orientate in camp magnetic in timpul solidificarii liantului atunci orientarea lor nu ramane arbitrara si $M_r^{opt} = (0.7 \div 0.8) \cdot (0.85) \cdot (230 \text{ emu/g}) = 137 \div 156 \text{ emu/g}$ ceea ce conduce la o crestere corespunzatoare a produsului energetic. Particulele magnetice se amesteca cu un liant care poate fi un material thermoplastic ca nylon, polyphenylene sulfide (PPS), polipropilena (PP), poliamida PA1010, polietilena de mare densitate sau rasini epoxidice bisfenolice. In unele cazuri liantul este dizolvat intr-un solvent iar in altele mixarea se produce ca urmare o topirii liantului. Pentru a se facilita legatura dintre particulele magnetice metalice si liantul organic este necesara o functionalizare prealabila a particulelor magnetice cu ajutorul unui agent de cuplare (e.g. KH550 - aminopropiltrietoxisilan). Liantul contine si compusi antoxoxidanti si agenti impotriva imbatranirii materialului (e.g. Na₃PO₄-12H₂O).Un alt aspect care trebuie luat in consideratie este reducerea viscozitatii liantului prin utilizarea unor agenti de lubrifiere (e.g. stearatul de zinc) care permite deplasarea si rotirea facila a particulelor magnetice in timpul presarii ceea ce permite un nivel ridicat de compactare si implicit un produs energetic ridicat. Dupa realizarea acestui amestec, materialul este presat intr-o matrita la presiuni de 300 Kgf – 1000 Kgf per cm² in camp magnetic aplicat cu valori de $0.5 \div 1$ T. **Bibliografie:**

1. J. A. Osborn, Phys. Rev. 67(11) (1945) 351-357

2. E. H. Frei, S. Shtrikman and D. Treves, Phys. Rev. 106(3) (1957) 446-455

3. A. Aharoni, Rev. Mod. Phys. 34(2) (1962) 227-238

4. A. H. Morrish and S. P. Yu, J. Appl. Phys. 26(8) (1955) 1049-1055

Activitatea I.4 S-a realizat pagina de web a proiectului:

http://www.infim.ro/projects/high-energy-efficient-permanent-magnets-without-rare-earth-elements

Activitatea I.5

Au fost preparate probe corespunzatoare unui raport diferit de ioni Fe^{3+} : OH⁻ (1:3, 1:6, 1:9, 1:12) pornind de la rapoarte diferite de solutii apoase de $Fe(NO_3)_3$ ·9H₂O si KOH care ulterior au fost tratate la 70 °C timp de 50 h. In figura de mai jos (Fig. 13(a) si Fig. 13(b)) este aratata comparatia intre morfologia particulelor obtinute pentru rapoartele Fe^{3+} : OH⁻ de 1:6 si 1:12, in ambele cazuri obtinandu-se goetita aciculara. Metoda de preparare este hidroliza sarurilor de Fe^{3+} si obtinerea goetitei int-un mediu puternic alcalin. In functie de modificarea valorii pH a solutie se modifica morfologia particulelor.

Fig. 13 (a) Imagini SEM - Goetita obtinuta pentru raportul molar Fe³⁺:OH⁻ de 1:6 al ionilor din solutie

Fig. 14 Spectre de difractie pentru goetita obtinuta cu diferite rapoarte Fe³⁺:OH⁻ al ionilor din solutie

Fig. 13 (b) SEM -Goetita obtinuta cu raportul Fe³⁺:OH⁻ de 1:12 al ionilor din solutie

Se observa o crestere atat in lungime (de la 1 μ m la 2÷3 μ m) cat si in diametru (de la 100 nm la 150÷200 nm) a particulelor aciculare de goetita cat si o aglomerarea a particulelor cu cresterea raportului molar Fe³⁺:OH⁻ de la 1:6 la 1:12 conform Fig. 13 (a) si (b). In cazul raportului molar Fe³⁺:OH⁻ de 1:3 nu se mai formeaza goetita ci hidroxi-hematita, deci goetita se formeaza numai intr-un mediu cu alcalinitate ridicata. Prin comparatie intre Fig. 15 (a) si (b) se observa cresterea dimensiunii particulelor aciculare de goetita (in principal lungimea particulelor creste de la 1 μ m la 3÷4 μ m) cu cresterea timpului de tratament la 70 ^oC mentinand raportul molar constant.

Fig. 15 (a) SEM - Goetita obtinuta cu solutie de 1M Fe(NO)₃·9H₂O + 5 M KOH la 70⁰C pentru 50 h

 BEM MA: 70 M.
 BEM MAG: 60 M.
 LYA3 TESCAH

 WD: Ha9 mm
 Yuw Ha42 Jam
 1 mm
 LYA3 TESCAH

Fig. 15 (b) SEM - Goetita obtinuta cu solutie de 1M Fe(NO)₃·9H₂O + 5 M KOH la 70^oC pentru 100 h

Fig. 18 Spectre de difractie pentru goetita obtinuta prin oxidarea cu flux variabil de aer a sol Fe²⁺

Dupa cum se observa din datele de difractie de raze X din Fig. 14, cu cresterea raportului molar Fe³⁺:OH⁻ peakurile se ingusteaza putin ceea ce sugereaza o crestere usoara a cristalitelor. Ingustarea este mai pronuntata mergand de la raportul molar 1:6 la 1:9 si mai redusa de la raportul molar 1:9 la raportul 1:12 deci cristalinitatea este foarte similara in probele 1:9 si 1:12 si mai redusa in proba cu raportul 1:6. O alta modalitate de producerea a particulelor de oxi-hidroxizi de fier este oxidarea controlata a sarurilor de Fe²⁺ (in cazul Fig. 16 si Fig. 17 a solutiilor apoase de FeSO₄) cu adaos de bicarbonat de sodiu (NaHCO₃) care functioneaza ca buffer de pH. Pentru un acelasi timp de tratament la fluxuri diferite de aer (Fig. 16 (a) si (b)) si Fig. 17 se observa o crestere evidenta a particulelor aciculare de goetita de la dimensiuni de zeci de nanometri la lungimi de 300÷500 nm si diametre de 50÷100 nm. Acest rezultat este sustinut si de masuratorile de difractie din Fig. 18 care confirma cresterea cristalitelor cu cresterea fluxului de aer in timpul tratamentului (peakurile se ingusteaza) dar ingustarea nu este foarte evidenta datorita faptului ca structura ramane in continuare foarte defectata (probabil poroasa) chiar la fluxuri mari de aer. Tratamente termice ulterioare sunt necesare pentru imbunatatirea cristalinitatii structurii si reducerea porozitatii.

Obiectivele celor 5 activitati din planul de realizare au fost indeplinite integral. In urma studiului aproape exhaustiv al literaturii s-au stabilit metodele de preparare si precursorii pentru obtinerea particulelor magnetice de Fe₁₆N₂. S-au efectuat preparari preliminare de oxo-hidroxizi (goetita, akagaenita) si oxizi de fier (hematita). S-a studiat influenta conditiilor de preparare (raport molar, timp de tratament) asupra morfologiei goetitei ce s-a obtinut din saruri de Fe³⁺. S-a stabilit corelatia intre morfologia goetitei (α -FeO(OH)) ce se obtine prin oxidarea controlata a sarurilor de Fe²⁺ si fluxul de aer in timpul tratamentului. Director de proiect: Dr. Petru Palade