Physica Status Solidi B: Basic Solid State Physics

A Dyson equation for non-equilibrium Green's functions in the partition-free setting
--Manuscript Draft--

Manuscript Number:

Full Title: A Dyson equation for non-equilibrium Green's functions in the partition-free setting
Article Type: Original Paper
Section/Category: NonEquilibrium Green's Functions
Keywords: Non-equilibrium steady-states, Dyson equation
Corresponding Author: Valeriu Moldoveanu, Ph.D.
National Institute of Materials Physics
ROMANIA

Additional Information:

Question Response

Please submit a plain text version of your Dear Editors,
cover letter here.
We would like to submit our paper entitled
"A Dyson equation for non-equilibrium Green's functions in the partition-free setting " to
be considered for publication as part of the
meeting "Progress in Non-Equilibrium Green's function".

We consider a small interacting sample coupled to several non-interacting leads.
Initially, the system is at thermal equilibrium. At some instant t_0 the system is set into
the so called partition-free transport scenario by turning on a bias on the leads. Using
the theory of Volterra operators we rigorously formulate a Dyson equation for the
retarded Green's function and we establish a closed formula for the associated proper
interaction self-energy.

Do you or any of your co-authors have a  No. The authors declare no conflict of interest.
conflict of interest to declare?

Corresponding Author Secondary

Information:

Corresponding Author's Institution: National Institute of Materials Physics
Corresponding Author's Secondary

Institution:

First Author: Valeriu Moldoveanu, Ph.D.

First Author Secondary Information:

Order of Authors: Valeriu Moldoveanu, Ph.D.
Claude Alain Pillet, Professor
Horia Decebal Cornean

Order of Authors Secondary Information:

Abstract: We consider a small interacting sample coupled to several non-interacting leads.
Initially, the system is at thermal equilibrium. At some instant $t_0$ the system is set
into the so called partition-free transport scenario by turning on a bias on the leads.
Using the theory of Volterra operators we rigorously formulate a Dyson equation for the
retarded Green's function and we establish a closed formula for the associated proper
interaction self-energy.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Complete Manuscript

O©CoO~NOOOITA~AWNPE

physica status solidi

A Dyson equation for non-equilibrium
Green’s functions in the partition-free

setting

H. D. Cornean', V. Moldoveanu™2, C.-A. Pillet®

! Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220 Aalborg, Denmark
% National Institute of Materials Physics, PO Box MG-7, Bucharest-Magurele, Romania
3 Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France

Received XXXX, revised XXXX, accepted XXXX
Published online XXXX

Key words: Non-equilibrium Green Functions, Dyson equation, Partition free states

* Corresponding author: e-mail valim@infim.ro

We consider a small interacting sample coupled to several non-interacting leads. Initially, the system is at thermal
equilibrium. At some instant ¢y the system is set into the so called partition-free transport scenario by turning on a bias
on the leads. Using the theory of Volterra operators we rigorously formulate a Dyson equation for the retarded Green’s
function and we establish a closed formula for the associated proper interaction self-energy.

1 Introduction The backbone of many-body pertur-
bation theory (MBPT) is the interaction self-energy X/
which appears in the Dyson equation for equilibrium or
non-equilibrium Green’s function (NEGF). At equilib-
rium, the structure of X' is guessed by systematically using
Wick’s theorem and by analysing the resulting expan-
sion into Feynman diagrams [1]. Approximation schemes
(e.g. mean-field approach or RPA) correspond to partial
resummation of series of diagrams contributing to X

In the non-equilibrium regime the Gell-Mann and Low
Theorem does not hold anymore and writing down sta-
tistical averages of time-dependent observables becomes
cumbersome. The remedy for these technical difficulties
is to combine the chronological 7" and anti-chronological
T time-ordering operators into a single operator 7¢ which
allows an unambiguous book-keeping of time arguments
on the two-branch Schwinger-Keldysh contour [2,3]. This
construction comes with a price: the non-equilibrium GFs
turn to contour-ordered quantities as well and the various
identities among them are not easy to recover. At a for-
mal level one assumes the existence of a well-defined self-
energy and then the contour-ordered Dyson equation splits
via the Langreth rules [4] into the Keldysh equation for
the lesser/greater GFs and the Dyson equation for the re-
tarded/advanced GFs (see the textbook [5]).

Copyright line will be provided by the publisher

The existence of a self-energy for the contour-ordered
GF is argued by the formal analogy between equilibrium
and non-equilibrium quantum averages. In fact, a ‘com-
plete’ self-energy is never written down explicitly. In more
recent formulations [6] one starts from the differential
equations of motions relating higher n-particle Green-
Keldysh functions and then truncates the so-called Martin-
Schwinger hierarchy [7] to identify various approximate
interaction self-energies.

Nowadays, the NEGFs formalism has grown up as a re-
markable machinery, being extensively used for modelling
quantum transport in mesoscopic systems [8], molecules
[9] or even nuclear reactions [10]. Nonetheless, some
fundamental theoretical questions were only recently an-
swered by fully exploiting the mathematical structure of
the theory and without making any approximations. We
refer here to: (i) the existence of non-equilibrium steady-
state (NESS) in interacting open systems and (ii) the in-
dependence of the steady-state quantities from the initial
state of the sample [11-15] both in the partitioning [16]
and partition free [17,18] settings. We recall here that in
the partitioned case the system and the biased leads are
initially decoupled.

In our recent work [19] the NEGF formalism for open
systems in the partitioning transport setting was rigorously
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treated in great detail and generality. In particular, we de-
rived the Jauho-Wingreen-Meir formula (JWM) [20] for
the time-dependent current through an interacting sample
by using only real-time quantities.

In this short note we are interested in the partition-free
regime which is less studied. We briefly outline a rigorous
formulation of the non-equilibrium Dyson equation for the
retarded Green’s function. Mathematical details are kept to
a minimum while focusing on the explicit construction of
a complete interaction self-energy.

The content of the paper goes as follows: the model and
the notations are introduced in Section 2, the main result
and its proof are given in Section 3 while Section 4 is left
for conclusions.

2 Setting and notation.

2.1 Configuration space and Hamiltonians. We
assume that a small sample is coupled to M leads. The one-
particle Hilbert space is of tight-binding type and can be
written as h = hs @ hr where b is finite dimensional and
hr = @f,vjzlb,, describes the (finite or not) leads. Particles
can only interact in the sample. One-particle operators are
denoted with lower-case letters and their second quantized
versions will be labeled by capital letters. The one-particle
Hamiltonian of the decoupled system acquires a block-
diagonal structure hp = hs & hg where hg = EB{,W:lh,,
is supposed to be bounded. The lead-sample tunnelling
Hamiltonian is defined as:

M
he =Y du (£} (gu] + 9} (fo]) (1)

v=1

where v counts the particle reservoirs, f, € b, and g, €
hs are unit vectors and d, € R are coupling constants.
The one-particle Hamiltonian of the fully coupled system
is then h = hp + hr.

We summarize below some useful identities from the
second quantization machinery (see e.g. [21]). The total
Fock space admits a factorization F = Fs ® Fr. By
a” (f) we mean either the creation operator a*(f) or the
annihilation operator a(f). We have a*(\f) = Aa*(f)
and a(\f) = Xa(f). The general form of the canonical
anticommutation relations is:

{a(f),a™(9)} = (Flo),  {a(f);alg)} =0. (2

Here (f|g) denotes the scalar product in b. Also, a™ (f) is
bounded on the Fock space and ||a? (f)|| < || f]|-

The interacting, coupled system, and with a potential
bias v, on lead v is described by:

M
K,:=H+Y vo,N, +EW, (3)

v=1

where N, is the particle number operator on lead v (i.e.,
the second quantization of the orthogonal projection onto
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o), v := (v1,...,va) € RM is the bias vector and

W= 13 wtepa(a)e (w)alyade)

z,yeS

is the second quantization of a two-body potential satisfy-
ing w(z,y) = w(y,z) and w(z,z) = 0 for all z,y € S.
Here £ € R stands for the interaction strength.

Assume that the bias is turned on at time ¢ = 0. Then
the Heisenberg evolution of an observable A att > 0 is

Th (A) = v de™ e ¢ > 0. (4)

If h is a single-particle Hamiltonian, the associated
Heisenberg evolution obeys:

(0¥ (f)) = Ma# (fle ™ =a¥ (" f), (5)
and one has

[H, a*(f)] = a*(hf)v [H7a(f)] = _a(hf)' (6)

Along the proof of the Dyson equation we shall en-
counter the operators:

b(f) :=i&W,a(f)], 07 (f) =W, a™(f)]. ()

These operators vanish if f is supported in the leads.

2.2 The partition-free initial state. The initial state
in the partition-free case is a Gibbs state characterized by
the inverse temperature § > 0 and the chemical poten-
tial 4 € R. It is given by the thermodynamic (i.e., infinite
leads) limit of the density operator ppr = Z —le=B(Ko—uN)
where Z = Trz e #(Ko—1N) In what follows we briefly
explain how it is constructed.

The interacting but decoupled and unbiased Hamilto-
nian is denoted by:

Kp:=Hs+&¢W + Hg = Ko — Hr.

The thermodynamic limit of pp = Zgle’ﬁ(KD’“N)
where Zp = Try e PEDP=#N) j5 a tensor product be-
tween a many-body Gibbs state

g = 1 o~ B(Hs+EW —pNs)
Trr e AlHs+EW—uNs)

only acting on the finite dimensional Fock space Fs, and
M non-interacting (3, 1) Fermi-Dirac quasi-free states
acting on each lead separately, where expectations can
be computed with the usual Wick theorem. This special
factorized initial state is denoted by ( - ) 5., For exam-

ple, the expectation of a factorized observable of the type
0 = 0sTL,L, a*(fo)alf,) where f,. [, € by is:

M
(), = Tery050) T l1d-+ B0 ) 1),

v=1
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Its connection with the partition-free state is as follows.
Consider the operator B(a) := e~ *“Kp [IpeieKp o ¢ R,
From (1) and using (5) we see that a generic term entering
B(a)is

Z dy a* (e f,) T % e (algw))-

Since h, is bounded and Fg is finite dimensional, this
expression remains bounded for all complex values of a.
Then, the initial value problem

I'(z) = Bliz)[(z),  I'(0)=1d,

has a unique solution given by a norm convergent Pi-
card/Dyson/Duhamel iteration, with terms containing
products of operators either living in the sample or in the
leads. Consequently, writing e #Ko = e=PKp () we
obtain an appropriate expression for the thermodynamic
limit: O being an arbitrary bounded physical observable,
we have

_(L(B)0),,
<O>pf* <F(ﬂ)>ﬂ,u :

2.3 Function spaces and Volterra operators. Let
0 < T < oo be fixed and let C([0,T];h) be the space
consisting of time dependent vectors ¢(t) € h,0 <t < T,
which are continuously differentiable with respect to ¢, and
#(0) = 0. We also define C([0,T7]; ) to be the space of
vectors which are only continuous in ¢, with no additional
condition at ¢ = 0. We note that C'([0,T;h) is a Banach
space if we introduce the norm

ol == sup [l9(t)lp-
0<t<T

®)

We say that an operator A which maps C'([0, 7']; ) into
itself is a Volterra operator if there exists a constant C4 <
oo such that

t
I(AY) (Bl < CA/O [(E)llpdt’, 0<t<T.

By induction one can prove:

(CAT)H71 ! / /
el MG AN
In particular, the series > .,(—1)"A™ converges in
operator norm and defines a Volterra operator with
a constant less than Cae?“4. Thus, (Id + A)~! =
Id + Y ,5,(—1)"A" always exists and A(Id + A)~!
is a Volterra operator.

2.4 Retarded NEGF’s. Let {e;} be an arbitrary or-
thonormal basis in fj. Define the map G : C([0,T];5) —
C3((0, T ) given by:

(A" ) (B)[ly < Ca

(€51 (Gow) (1)) = —i / (esle™ Py )de'. )

One can check that G is invertible and if ¢ € C} ([0, T; b):
(Gy'9)(t) = 10:0(t) — hoo(t) € C([0,T):b).  (10)

By definition, the retarded non-equilibrium Green oper-
ator in the partition-free setting G¢ : C([0,T];h) —
C3([0,T7;b) is given by:
(ej[(Gew)(1)) :=
¢
—i [ (ke 0 @) fale )y ' D)

Using (5) and (2) we see that G¢ coincides with Gy when
& = 0. One can show that

t
(Ge) (D)l < 2/0 [(t)lpdt’, (12)

so that G¢ is a Volterra operator. The integral kernel of G¢
is nothing but the more familiar retarded NEGF given by:

G?(ej,t;em,t’) =
—i0(t — ') ({k, (@"(em)), The, (a(e)}) - (13)
and
(ej|(Gep) (1)) =
Zm:/o GE(es.tsem ) emlb(E))dE.  (14)

The advanced NEGF can be defined as:
G?(eja t? €m, tl) = 7G?(6]a tla €m, t)
= +H0(t' - t)({r, (@"(em)), Tk, (ale))}) ¢ -

All properties of the advanced NEGF can be immediately
read off from those of the retarded one.

3 Proper self-energy and Dyson equation. Here
is the main result of our paper.

Theorem 1. The bounded linear map 5‘5 defined on
C([0,T1;h) by

(ej](Zed) (1)) = (15)
i / 000, (ble))}) p dt’
+i(rh, ({a™ (6(), be) D) ¢ »
obeys:
Ge = Go + GoZGy. (16)

Moreover, the operator GOS‘E is a Volterra operator, the
inverse (Id + Goﬂg)_l exists, and by defining

Se = 5 (Id n Goz‘g) o (17)

Copyright line will be provided by the publisher
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we have: 3.3 Proof: step 3. From the first two steps we de-
Ge = Go 4+ CoSeCe. 18 rive (16). From (15) and (12) we see that A = GoX¢ is
¢ 0+ GoZebre (18) a Volterra operator for which there exists a T'-dependent
Finally, GoX¢ is also a Volterra operator and constant C' < oo such that
Ge = (Id — GoXe) ™' Go. (19)

3.1 Proof: step 1. First we will show that the iden-
tity:

Gy'Ge =1d + F (20)
holds on C'([0, T; h), where the map F¢ is given by
(ej|(Fey)(t)) ==
/ L @ W), e (e D) . @)
Using (10) and (11) we have:
(eml (G ' Gev) (1) = (em[v(2)) (22)
- Z(emlhv€j><€j|(G§¢)(t)>
j

t
+ [k 0 @) 0 (alen)) ), -
From the antilinearity of the annihilation operators we get

> (emlhoe;) el (Ge) (1)) =

J
t
i [k WD) (e
Also, using (4), (6) and (7) we obtain the identity:

Oitic, (alem)) = —itk, (hva(em)) + i, (b(em))-

After introducing the last two identities into (22) we see
that two terms cancel each other and we obtain (21).

3.2 Proof: step 2. The second step consists of
showing that F¢ can be written as X¢Gy, with X¢ as

in (15). In order to identify 5’5 we compute for every
¢ € C}([0,T];b) the quantity (remember that a* is lin-
ear):

(ej|(FeGy o) (1)) (23)
=i [ (ke @ @) e (e ) o

— [ (ke (bl ) e (e
Another key identity is:
Th (@ @uo(t') = 0 (78, (0" (6(1))))

—irje, (@” (ho(t')) — i, (" (R (1))
Inserting this identity in (23), integrating by parts with re-
spect to ¢ and using that ¢(0) = 0, we obtain (15).
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t
II(Aw)(t)IIhSC/O [0 lpdt', 0<t<T. (24)

Then (Id+A) ! exists and it is given by a norm convergent
Neumann series ) . ,(—1)"A", as long as T" < oco. We
write -

Go = (1d+ Gy ) e

and we can choose X¢ as in (17), which finishes the con-
struction of the proper self-energy.

3.4 Consequences. We list a few remarks concern-
ing our main theorem.

(i) The integral kernel of jjg (see (15)) is given by

f]f‘(ej,t;em,t’) = (25)
—i0(t — ') {7k, (b" (em)), Tk, (b(e;))})
+i6(t — ') (7, ({a* (em), blej)}))

pf
pf *

If either e; or e, belongs to the leads, then the above ma-
trix element equals zero. The explanation for the first term
is that at least one of the two operators b(e;) and b* (e, )
defined through (7) would be zero in this case, because the
self-interaction W is only supported in the sample, hence it
commutes with any observable supported on the leads. For
the second term, assume that e; is from the sample while
€m is from the leads. Then since b(e;) is a sum of products
of three creation/annihilation operators from the sample, it
anticommutes with a* (e, ).

The proper self-energy X¢ has the same support prop-

erty. One recognizes that Zg(ej,t; em,t') is a reducible
self-energy . In the diagrammatic language all terms con-
tributing to Eg’(ej7 t; em, t') connect to other diagrams by
incoming and outgoing G-lines.
(ii) If both e; = x and e,,, = y are located in the small
sample, then from (18) we see that in order to compute
G?(w, t;y,t') we only need to know the values of Gy re-
stricted to the small sample (besides X¢, of course). From
(9) we have:

Gz, ty, 1) = —i0(t — ') (x]e = hoyy

with z,y € S. Such matrix elements can be computed
from the resolvent (h, — z) ! restricted to the small sam-
ple; we note that via the Feshbach formula, the biased leads
appear as a non-local “dressing” potential which perturbs
hg, see [14] for details.
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At the level of integral kernels, the Dyson equation (18)
reads as:

G (x, by, 1) = G (z, 5y, 1)

t S
+ / ds / ds'
Z 0 0

u,VES
CG (@, tu, ) DE (u, 830, 8 )GE (v, 83y, 1).

(iii) Assume that we can write X¢ as Y, + X/, where
Yapp 1S an approximating Volterra operator. If Gopp =

(Id — GoZapp) Gy is the solution of the approximate
Dyson equation G pp, = Go~+GoXappGapp, then we have:

G& = Gapp + GappZ/GE

and G¢ = (Id — GappX') ' Gapp-

(iv) The limit T" — oo is a difficult problem. To the best
of our knowledge, the only rigorous mathematical results
concerning the existence of a steady-state regime in parti-
tion free-systems are [14,15]. Under certain non-resonant
conditions and for £ small enough, one can prove that a
quantity like G{ (e, ' 4 s;en,t’), where 5 > 0 is fixed,
will have a limit as ¢/ — oo. This is definitely not guar-
anteed to happen in all cases, not even in non-interacting
systems, due to bound states which may produce persistent
oscillations.

4 Conclusions We presented a non-perturbative ap-
proach to the partition-free transport problem. Starting
from the Volterra operator associated to the retarded
Green’s function we establish its Dyson equation, and we
derive closed formulas for the reducible and irreducible
self-energies. The proof is rigorous yet elementary in the
sense that although the partition-free scenario is a genuine
non-equilibrium regime we do not use contour-ordered op-
erators. A Keldysh equation for the lesser Green’s function
should be established following the same lines of reason-
ing, with the extra difficulty induced by the fact that in
the partition free setting, the small sample is not empty at
t=0.

Unravelling the connection between the closed for-
mula (15) and the diagrammatic approach remains an
open problem. Although the anti-commutator structure
(th ({a* (o(1)), b(ej)})>pf in Eq. (15) looks less familiar
one can speculate that the systematic application of the
Wick theorem should eventually recover various classes
of diagrams. A possible approximation in the self-energy
would be to replace the interacting propagator 77 (-) with
the non-interacting one 7, (-), where K, = H, + ¢W.
Note however that the application of the Wick theorem is
technically challenging due to the extra term I'(/3) appear-
ing in (8).

Given the fact that the partition-free setting is less stud-
ied in the literature, yet more intuitive on physical grounds
than the partitioned approach, we hope that our investiga-

tion will trigger more efforts from both the physical and
mathematical-physics communities.
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