
Interaction and size effects in open nanoelectromechanical systems

1. Introduction

Our system consists of a 2D quantum wire (QW) of length Lx and width Ly. A singly
clamped nanoresonator of mass m0 and frequency ω0 is aligned to the y-axis such that its
endpoint can vibrate above the QW. In the absence of a driving signal and of a time-dependent
electrostatic coupling to the QW the NR is located at the equilibrium distance z0. In this
configuration the segment of length Ly belonging to the NR acts as an oscillating tip. Let us
stress though that here we are looking for the quantum regime of the NR and therefore our
calculations are not relevant for an AFM tip which is always is the classical regime. For that
configuration one can rely on a classical description of the nanoresonator. The NR could be a
simple beam or a carbon nanotube (CNT). Note that one can easily sweep the nanoresonator
along the x axis and then record the changes in its dynamics or in the transport properties of
the QW. We assume that the NR is cooled down such that the ratio kBT/~ω0 is not very large
(typically we consider kBT ∼ 10~ω0).

The electron-vibron electrostatic coupling depends essentially on the nanoresonator mass
M and on its fundamental frequency ω0 (through the oscillator length

√

~/2Mω0) but also on
the charge density of the mesoscopic system which reflects in turn the localization properties
of its wavefunctions.

Our aim here is to investigate the effects of the electron-vibron coupling on the dynamics
of the nanoresonator. In contrast to most of previous works we pay special attention to the
description of the electrostatic QW-NR interaction (see below). The geometry of the nanowire
and the Coulomb interaction effects are also taken into account. Also we provide calculations
for both transient and steady-state regimes.

A brief discussion on the available frequency range is useful here. A transverse oscillation
mode around 39 GHz has been reported for a suspended CNT [1] while stretching modes
can go up to 200 GHZ [2]. Notably, short CNTs were also shown to display extremely high
frequency strain-tunable bending modes (few hundred GHz!) [3]. Note however that first
experiments involving both CNTs and semiconductor cantilevers coupled to single-electron
transistors (SETS) have been performed at ω0 ∼ 150 − 450 MHz. The main point here is
that in order to record changes induced by the NR on the transport properties the vibrational
level spacing must be discerned when the chemical potentials of the leads are varied (see the
discussion below). On the other hand, we find that the tunneling processes in the QW always
trigger a change in the average vibron occupation provided the electrostatic coupling leads to
a mixture of states with different vibron numbers.

The theoretical studies on nano-electromechanical systems both in classical or quantum
regimes rely on Master equation approaches [6, 7] or non-equilibrium Green’s functions tech-
niques. Starting from a single-level Anderson-Holstein Hamiltonian (SLAH) where the electron-
vibron electrostatic coupling is parameterized by a simple constant λ, one performs the unitary
polaronic (Lang-Firsov) transformation leading to vibronic sidebands. Notably, this polaron
transformation involves a perturbative expansion w.r.t. the dimensionless ratio λ/~ω0 and
changes the lead-nanowire tunneling Hamiltonian HT by adding the operator-valued exponen-

tial eλ/~ω0(a
†+a).

A different and much less explored route is to solve the Master equation in the basis of the
fully coupled NR+SET system. To our best knowledge this route was first taken by Hubener
and Brandes [8] for the simple case of a single-level quantum dot coupled to a classical oscil-
lator. They ended up with a Franck-Condon Master equation which naturally embodies the
overlap between different vibrational components of the interacting wavefunctions. The role of
these position-dependent Franck-Condon terms on the mass sensing and transport properties
of suspended CNTs has been later pointed out in the theoretical calculations of Remaggi et al.
[4] and Donarini et al. [5]
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Here we shall present some preliminary results on interaction and size effects in open na-
noelectromechanical systems. As stated above we pay special attention to the description of
the electron-vibron coupling. The transient and steady-state transport properties are discussed
within the Master equation formalism.

2. Formalism

We introduce the main steps of the formalism. The Hamiltonian HQW of the quantum wire
embodies the geometrical details and the effect of the Coulomb interaction. The single-particle
eigenenergies and eigenfunctions are denoted by εn and ψn. Then we introduce the Coulomb
interaction and calculate numerically the low-energy interacting many-body configurations |ν〉
and the associated eigenvalues Eν , such that HQW|ν〉 = Eν |ν〉. To be more specific, the
Hamiltonian of the interacting quantum wire reads:

HQW =
∑

i,σ

εiσc
†
iσciσ +

1

2

∑

i,j

∑

σ,σ′

Vijjic
†
iσc

†
jσ′ciσ′cjσ +

∑

i,j

∑

σ,σ′

Vijijc
†
iσc

†
jσ′cjσ′ciσ, (1)

where Vijji (Vijij) stands for the exchange (direct) interaction terms and c†i (ci) are the creation
(annihilation) operators associate to a single particle state with energy εi. The QW-NR system
is described by the Hamiltonian:

HS = HQW +HNR + Vel−vb := H
(0)
S + Vel−vb, (2)

where HNR = ~ω0a
†a and Vel−vb stands for the electron vibron coupling which can be written

as:
Vel−vb =

∑

i∈QW

vic
†
i ci(a

† + a). (3)

Here a†/a are the raising/lowering operators associated to the vibrational mode. Note that

H
(0)
S |ν,N〉 = (Eν + N~ω0)|ν,N〉 where we introduced the ‘free’ states of the system in the

absence of the electron-vibron interaction |ν,N〉 := |ν〉 ⊗ |N〉, being |N〉 the N-vibron state of
the nanoresonator (i.e. a†a|N〉 = N |N〉).

In Eq. (3) vi denotes the electron-vibron coupling strength associated to the single-particle
state ψi of the non-interacting QW. Its explicit form is obtained by expanding the QW-NR
electrostatic interaction about the equilibrium position z0 and by quantizing the displacement
u = z′ − z0. The 1st order term associated to the i-th SPS reads:

V̂i =
eQtip

4πε0εr

∫

NR

dr′
∫

QW

drNi(r)û
∂

∂z′
|r− r′|

∣

∣

∣

∣

z′=z0

= vi(a
† + a), (4)

where Ni(r) = |ψi(r)|
2 is the electronic density at site i and Qtip = eNtip is the charge localized

on the NR. In our discrete model the integrals will be simply replaced by sums over the sites

describing the NR and the QW. Note that vi ∼
√

~

2Mω0
but it also depends on the geometry

of the NR. For simplicity we omitted the 0-order term which only induces a global shift of the
eigenstates of the nanoresonator.

The states of the coupled QW-NR system can be generally written as linear combinations
of ‘free’ states:

|p〉 =
∑

ν,N

C
(p)
νN |ν,N〉, (5)

where the coefficients C
(p)
νN are found by numerical diagonalization. It is however useful to

introduce an alternative notation. Since the electron-vibron interaction conserves the electronic
occupation of the quantum wire it follows that for any MB configuration ν one gets a subspace
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of fully interacting states {ν, s} which only differ by the weights A
(ν)
sN of different vibron states

|N〉:

|ν, s〉 = |ν〉 ⊗

{

∑

N

A
(ν)
sN |N〉

}

:= |ν〉 ⊗ |sν〉, (6)

where the notation sν recalls that the vibrational components depend on the many-body con-
figuration. A similar notation was used in [8]. In practical calculations the number of vibronic
states s must be limited to a cut-off value Neff such that s,N = 1, 2, ..., Neff. Note that for

each many body configuration ν the coeficients A
(ν)
sN define a unitary transformation between

{|N〉} and {|sν〉}. In other words the Hamiltonian of the QW-NR systems is block diagonal
w.r.t |ν〉. With this notation the eigenvalues of the coupled electron-vibron system are defined
by HS |ν, s〉 = Eνs|ν, s〉.

The transfer Hamiltonian describing the lead-QW coupling has a standard form:

HT =
∑

α

∑

k,σ

∑

i∈QW

(

V α
i,kσc

†
ickασ + h.c.

)

, (7)

where (k, σ) stand for the momentum and spin ofelectron in the reservoir α and V α
i,kσ is the

tunneling strength. We assume for simplicity that the tunneling processes conserve the spin
such and does not depend on k.

The dynamics and the transport properties of the system are calculated from the Master
equation of the reduced density operator ρ(t) = Trleads{W (t)} where W (t) is the density oper-
ator of the whole system, i.e solving i~Ẇ (t) = [HS +HT +Hleads,W ]. The leads are suddenly
coupled at some initial time t0 and ρ(t0) = |ν0, N = 0〉〈ν0, N = 0|.

Within the Born-Markov approximation the Master equation reads:

ρ̇(t) = −
i

~
[HS , ρ(t)]− Lleads[ρ(t)]− Lκ[ρ(t)], (8)

where Lleads takes into account the contribution of the particle reservoirs (i.e. the leads) and Lκ

describes the damping of vibrons due to a thermal reservoir. By straightforward and standard
calculations one finds that:

Lleads[ρ(t)] =
1

~2

∫ ∞

0

dsTrleads

{[

HT , [H̃T (−s), ρ(t)ρR]
]}

, (9)

where ρR is the equilibrium statistical operator of the reservoirs and the interaction picture w.r.t
the Hamiltonian of the disconnected system reads HT (t) = e

i

~
t(HS+Hleads)HT e

− i

~
t(HS+Hleads).

To get to a more explicit form of Lleads one expresses HT in the basis of fully interacting states
|ν, s〉. By doing so the Lindblad-like terms are expressed in a compact form (the sums run over
the lead index α = L,R and the spin on leads σ =↑, ↓):

Lleads[ρ(t)] =
π

~

(

∑

α,σ

[Aασ,Bασρ(t)− ρ(t)D†
ασ] + h.c

)

. (10)

The operators A,B and D are given as follows:

Aασ =
∑

νs,ν′s′

Tασ
νs,ν′s′ |νs〉〈ν

′s′| (11)

Bασ =
∑

λr,λ′r′

(1 − fα(Eλ′r′ − Eλr))T
ασ

λr′,λr|λr〉〈λ
′r′| (12)

Dασ =
∑

λr,λ′r′

fα(Eλr − Eλ′r′)T
ασ
λr,λ′r′ |λr〉〈λ

′r′|. (13)
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We introduced the Fermi functions fα(E) and jump operators between pairs of fully interacting
states (Dασ is the density of states of the lead α):

Tασ
νs,ν′s′ =

√

Dασ

∑

i∈QW

V α
i,σ〈ν|c

†
i |ν

′〉 · 〈sν |s
′
ν′〉. (14)

The thermal damping term reads simply as:

Lκ =
κ

2

(

a†aρ+ ρa†a− 2aρa†
)

. (15)

The Master equation will be solved w.r.t the fully interacting states |ν, s〉 of the QW-NR
system. Here ‘fully interacting’ means that both the Coulomb interaction within the QW and
the electron-vibron coupling are taken into account. The main point here is that along the
derivation of the Master equation the argument of the Fermi functions is given by the energy
difference between two fully interacting states (e.g. fα(Eνs−Eν′s′)). Essentially this means that
the electron-vibron coupling renormalizes the tunneling energy Eν − Eν′ between two many-
body configurations of the mesoscopic system. Note that the numbers of electrons for the pair
ν, ν′ obey the identity |n(ν)−n(ν′)| = 1 (tunneling or tunneling out events) and that the scalar
product between two vibrational components sν and sν′ is nothing but the Franck-Condon
factor.

As a particular case one can choose µL and µR such that fL = 1− fR = 1. Then it is easy
to see that:

∑

νs,ν′s′

fα(Eνs − Eν′s′)T
ασ
νs,ν′s′ |νs〉〈ν

′s′| =
∑

ν,ν′

TLσ
νν′ |ν〉〈ν′| ⊗ 1vb. (16)

This means in particular that one could actually solve the Master equation w.r.t the ‘free’ states
and that the dissipative term of the leads Lα,σ does not depend explicitely on the electron-vibron
coupling. In fact one check that Bcσ = A†

cσ and that Dvσ = Avσ . Consequently, the leads’
dissipative term acquires the well known Lindblad form:

Lα,σ[ρ] = Aα,σA
†
α,σρ+ ρAα,σA

†
α,σ − 2A†

α,σρAα,σ. (17)

A different regime is in order if the different energy differences Eνs−Eν′s′ are found on both
sides of the chemical potential of a given lead. Then the effect of the vibrons on the tunneling
energies is not negligible and one has to solve the Master equation w.r.t full basis. Of course
it is always possible to switch back to the ‘free’ state picture using the inverse transformation
|ν,N〉 =

∑

sAsN |s,N〉 and look at the associated populations and coherences.
Now let us compute the observables in terms of the matrix elements of ρ(t). We denote by

QS = eNS = e
∑

i c
†
ici the charge operator in the sample. The two time-dependent currents

are identified and calculated from the continuity equation:

d

dt
QS(t) = eTr{NS

d

dt
ρ(t)} = eTr{NSLleads} = JL(t)− JR(t). (18)

By convention the current in the left contact JL is positive if electrons flow from the contact
into the QD, while the current in the right contact JR is positive if electron leave the valence
energy levels of the QD. Each current can be identified by noticing that Lleads = LL + LR.

The vibron number is calculated as Nv = Tr{ρ(t)a†a}, while the electron number NS =

Tr{NSρ(t)}. Finally the displacement of the nanoresonator d =
√

~

2M0ω0
Tr{(a† + a)ρ(t)}.

As for the matrix elements of the reduced density operator we switch back to the ’free’ basis
as it is more convenient for discussions. As an example, the population of N -vibron states is
defined as:

PN =
∑

ν

〈ν,N |ρ(t)|ν,N〉. (19)
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3. Results

The quantum wire is described by a two-dimensional discrete Laplacian with Dirichlet
boundary conditions. The hopping energy is however related to the effective electron mass.
Lx, Ly denote the size of the mesoscopic system in nm. A typical case is an InAs quantum
wire for which Lx = 75nm and Ly = 10nm. Unless otherwise stated the temperature of the
system is T = 50 mK; with the present cooling techniques such a regime was already achieved
in experiments.

The nanoresonator geometry cannot be easily described and is beyond the scope of the
present work. We adopt a minimal model which allows us to calculate the electrostatic coupling
to the QW. More precisely we consider a collection of few sites (Ntip) located above the QW at
an equilibrium distance z0 (on the z-axis). These sites simulate the endpoint of the cantilever.
In order to calculate the QW-NR Coulomb potential we need the coordinates of the NR sites
in the (x, y)-plane. To this end we use the same grid as for the QW and select the ”mirror”
sites {s1, s2, ..., sNtip

} describing the tip. The QW-NR electrostatic coupling depends both on
the position of the tip but also on the localization properties of the single-particle states in the
QW. Suppose that the cantilever is one-dimensional and oriented along the y-axis. We also
allow for some charge Nq on each site of the tip. This helps us to tune the QW-NR coupling
besides varying ω0, z0 and M .

The semiinfinite leads attached to the NW are also described by discrete Laplacians. A
two-dimensional lead is just a bunch of 1D ”channels” coupled at consecutive sites of the
sample edge. For the numerical calculations we considered four-channel leads. For simplicity
we slected the chemical potentials of the leads such that no more than two electrons participate
in transport. Then spin-up and spin-down electrons coming from the left lead occupy the lowest
single-particle state of the dot which is mostly localized in the center of the QW but also extends
towards its endpoints.

The Master equation is solved numerically by using a 4-point Runge-Kutta method.
We now present the main results obtained at this stage of the project.

• Formal results. The intertwined dynamics of the open NEMS is described within a gener-
alized Master equation approach which is exact w.r.t. the electron-vibron coupling. More pre-
cisely, we implemented numerically a Franck-Condon Master equation by treating the intradot
Coulomb interaction and the electron-vibron coupling on equal footing. This goes beyond most
of the existing approaches which assume that a single electron contributes to the transport and
to the interaction with the vibrons. The eigenfunctions of the nanoelectromechanical system
are found using configuration-interaction methods. We analyze the effect of the electron-vibron
coupling on the energy spectrum of the nanoelectromechanical system. This dependence can
lead to the removal or the onset of the Coulomb blockade as the distance between the NR and
the mesoscopic system is changed.

• Improved model for the electron-vibron coupling. Our approach captures the dependence
of the electron-vibron coupling on the location of the nanoresonator and on the equilibrium
distance to the open mesoscopic system. We calculated the populations associated to different
vibron numbers and investigated their dynamics for various locations of the NR on the x-
axis. The time-dependent (i.e. transient) filling of the vibronic states reflects the ”climbing”
of the harmonic oscillator states due to the electron-vibron coupling. The coupling of the
nanoresonator to a thermal bath limits the number of vibronic states excited by the current
passing through the wire and drives the system to a steady state. If the states participating to
the transport are well within the bias window the nanowire cannot detect neither their dynamics
nor a shift of the tip along the x-axis. The role of the open quantum wire remains however
crucial as it sets the NR into motion and changes its equlibrium position.

• Vibron dynamics in an unbiased (yet open) sytem. We find that the electron-vibron
coupling drives the nanoresonator out-of-equilibrium even in the absence of an applied bias.
Fig. 1(a) shows the evolution of the average vibron number at equal chemical potentials of the

5



leads µL = µR = µ0 and for several values of the equilibrium distance z0. We selected µL,R

such that the QW accumulates at most one (µ0 = 35 meV) or two electrons (µ0 = 80 meV).
The vibron number Nv displays periodic oscillations for all configurations in spite of the fact
that the charge on the QW settles down rapidly (not shown) to Q = 1 or Q = 2. It is clear
that the mechanism behind these oscillation is similar to the one leading to Rabi oscillation in
quantum optics. Here the off-diagonal electron-vibron interaction 〈ν,N |Vel−vb|ν,N ′〉 couples
’neighbor’ vibron states and therefore generates coherences w.r.t. the vibron number in the
Master equation.

In the case of double-occupancy Q = 2 we show results for two values of the equilibrium
distance z0. As expected, when the NR approaches the system by just 10 nm the vibron
number increases as the electrostatic coupling enhanced. For single-occupancy configuration
(Q = 1) one has to reduce the initial position of the nanoresonator in order to capture the
effect of electron-vibron coupling. In the long time limit the oscillations of Nv are damped by
the coupling to a thermal bath (the corresponding rate κ was chosen such that ~κ is 10 times
smaller than the smallest matrix element of the el-vb interaction).

Further information could be extracted by looking at the populations of N -vibron states.
Fig. 1(b) captures the out-of-phase oscillations of P0 on one hand and P1,2,3 on the other hand.
We also see that the main contribution to the vibronic populations is due to the one and two
vibron states while P3 can be neglected.
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Figure 1: Left panel: The average vibron number for unbiased QW. The double occupancy
Q = 2 is reached for µL = µR = 80 meV while single-electron configuration corresponds
to µL = µR = 35 meV. Right panel: The populations of N -vibron states for the double-
occupacy configuration at z0 = 160 nm. Other parameters: ω0 = 500MHz, M = 2.5 · 10−15kg,
E↑ = E↓ = 31.85 meV, E↑↓ = 77.25 meV.

The calculations discussed above were obtained starting from the initial state |0, N = 0〉
(that is there are no electrons or vibrons in the system before the coupling to the leads is
switched on). Of course, the steady-state quantities do not depend on the choice of the initial
state.

• The dependence of the vibron number on the location of the NR on the x-axis. For these
simulations the system is also submitted to a bias and all states with at most one electron are
available for tunneling IN and OUT processes. Similar results were obtained for a bias which
activates as well the two-electron states. If the NR is placed above the center of the nanowire
(i.e. for Lx,tip = 36.5 nm) the charge density associated to the lowest energy single-particle state
interacts strongly with the NR. Consequently the electron-vibron coupling reaches a maximum
and states with up to 5 vibrons are populated (see Fig. 2(a)). By changing the position of
the nanoresonator the minimal distance between the NR and the QW does not coincide to the
maximum value of the charge density of the latter so the electrostatic potential decreases. This
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has an effect on the average vibron number which drops from Nv = 1.4 to Nv = 1.25.
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Figure 2: Left panel: Populations of N -vibron states for centered tip Lx = 36.5 nm. Right
panel: Vibron number for different NR positions along the x-axis. Initial state: |n = 0, N = 1〉,
ω0 = 500MHz, M = 2.5 · 10−15kg, d0 = 150nm, µL = 35 meV, µR = 25 meV, E↑ = E↓ = 31.85
meV. κ = 0.1V0, where V0 is the smallest el-vb coupling associated to the pair of states |1, N = 1〉
and |1, N = 0〉.

Fig. 3(a) and (b) show the populations of the N -vibron states PN =
∑

ν〈ν,N |ρ(t)|ν,N〉
as a function of time for several locations of the nanoresonator on the x-axis. As expected,
if the NR is shifted towards the endpoints of the NW the electron-vibron coupling decreases.
Consequently, the populations of excited vibron P2,3,4,5 states presented in Fig. 3(b) settle down
to smaller values while P0,1 slightly increase. A similar effect is noticed on the average vibron
number which drops from Nv = 1.4 to Nv = 1.25.

We also find that the displacement of the NR oscillates for a long time (µs) and settles
down to a different value w.r.t to the initial equilibrium position (not shown). In contrast, if
the chemical potentials of the leads are equal the NR returns to its equilibrium value z0.
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Figure 3: The population of N -vibron states for two locations of the NR on the x-axis. (a)
Lx,tip = 36.5 nm, (b) Lx,tip = 2 nm. Other parameters: ω0 = 500MHz, M0 = 2.5 · 10−15kg,
d0 = 150nm, E↑ = E↓ = 31.85 meV, µL = 35 meV, µL = 25 meV.

Remark: This ‘senseless’ regime of the QW corresponds to frequencies of hundreds MHz.
Such frequencies were used in recent experiments [10] where a carbon nanotube is used both
as a conducting system and as a nanoresonator driven by a microwave signal. Here setup is
very different as the quantum wire and the NR are separate systems. In order to capture a
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change in the transport properties due to the electron-vibron coupling one has to increase the
level spacing of the vibronic states. This amounts to increase the NR frequency to tens or

even hundreds of GHz such that the ‘ladder’ of harmonic oscillator levels E
(0)
νN = Eν + N~ω0

associated to a given many-body configuration ν of the QW can be individually scanned by
varying the chemical potentials of the leads.

Some spectral analysis

Motivation: This analysis should help us understand the role of electron-vibron coupling in
the transport properties.

The fully interacting eigenstates |ν, s〉 and their corresponding eigenvalues Eνs are calculated
by numerical diagonalization (there is no way to get analytical results). It is useful to look at

the weights |A
(ν)
sN |2 of various vibron states |N〉 for different strenghts of the electron-vibron

strenghts. We can easily guess their behavior and the degree of mxing between different states
|ν,N〉. On one hand, if the relevant electron-vibron interaction matrix elements are much
smaller than ~ω0 one expects that for any interacting vibrational state |sν〉 there exist a state

|Ñ〉 such that its weight |A
(ν)

sÑ
|2 is much larger than any other weights appearing in |sν〉. This

situation corresponds to a weak mixing due to the el-vb interaction. On the other hand if the
el-vb matrix elements increase, the relevant weights will be spread over many vibron numbers
N . The stability of the diagonalization procedure is reached if by adding more vibron states
in the calculation the weights remain unchanged. Remark that the diagonalization procedure
provides a cutoff for an accurate calculation of the states and energies; the cutoff does not
depend on the chemical potential of the leads so it is not clear yet how many vibron states
must be included in the transport calculations.

It is clear that a strong mixing of the ‘free’ states prevents one to relate the fully interacting
states to the so-called sidebands Eν+N~ω0 which appear naturally if one performs the polaronic
transformation. The weights of ‘free’ states are also crucial for the structure of the Franck-
Condon terms appearing in the generalized tunneling coefficiens (see Eq. (14)) in which for any
pair of many-body states {ν, ν′} whose electronic occupations obey |n(ν)− n(ν′)| = 1 one has:

〈s′ν′ |sν〉 =
∑

N

A
(ν′)
s′NA

(ν)
sN . (20)

It is not difficult to grasp that the largest FC factor is generated by states whose dominant

vibronic numbers coincide (then both A
(ν′)
s′N and A

(ν)
sN are of the same order for a given N). This

can be checked easily on states for which n(ν) = 0 and n(ν′) = 1 because the ‘empty’ states
|0, N〉 cannot be mixed. The main idea is to look first at Tνs,0N as a function of N and secondly
to check the position of the energy differences Eνs − E0N w.r.t. the chemical potentials of the
leads. This analysis should provide a hint on the changes in the transport when by varying the
chemical potentials fα(Eνs − E0N ) is 0 or 1 for different pairs of states.
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