#	Titlul	Jurnal	Abstract	Finantare	Autori	FI	AIS	DOI	Q
1.	Bulks of Al- B-C obtaine d by reactive ly spark plasma sinterin g and impact properti es by Split Hopkin son Pressur e Bar	SCIENTIFIC REPORTS, 9 ,19 484 (2019)	Mixtures of B4C, alpha-AlB12 and B powders were reactively spark plasma sintered at 1800 degrees C. Crystalline and amorphous boron powders were used. Samples were tested for their impact behavior by the Split Hopkinson Pressure Bar method. When the ratio R = B4C/alpha-AlB12 >= 1.3 for a constant B-amount, the major phase in the samples was the orthorhombic AlB24C4, and when R < 1 the amount of AlB24C4 significantly decreased. Predictions that AlB24C4 has the best mechanical impact properties since it is the most compact and close to the ideal cubic packing among the Al-B-C phases containing B-12-type icosahedra were partially confirmed. Namely, the highest values of the Vickers hardness (32.4 GPa), dynamic strength (1323 MPa), strain and toughness were determined for the	UEFISC DI project, Romania [POC 37_697, 28/01.09. 2016 REBMA T]	Vasyl kiv, O; Borod ianska , H; Demir skyi, D; Li, P; Suzuk i, TS; Grigor oscuta , MA; Pasuk, I; Kuncs er, A; Badic a, P	4.011	1.286	10.1038/ s41598- 019- 55888-z	Q1

			samples with R =						
			1.3, i.e., for the						
			samples with a high						
			amount of AlB24C4.						
			However, the						
			existence of a						
			maximum, detectable						
			especially in the						
			dynamic strength vs.						
			R, indicated the						
			additional influence						
			of the phases and the						
			composite's						
			microstructure in the						
			samples. The type of						
			boron does not						
			influence the						
			dependencies of the						
			indicated mechanical						
			parameters with R,						
			but the curves are						
			shifted to slightly						
			higher values for the						
			samples in which						
			amorphous boron was used.						
	D 1			a • 1					
	Enhanc		Several	Spanish	del D:				
	ement		technological routes	Ministry	Pino,				
	of the		are being	of Economy	AP;				
	superca pacitive		investigated for	Economy	· ·				
	properti		improving the energy storage capability	and	Rama				
	es of		and power delivery	Competit	1				
	laser	PHYSICAL	of electrochemical	iveness	MA;				
		CHEMISTRY	capacitors. In this	[ENE201	1 1				
	ed	CHEMICAL	work, ternary hybrid	7-89210-				10.1039/	
2.		PHYSICS,21,	electrodes composed	C2-1-R];		3.567	0.942	c9cp042	Q1
	U 1	pp.25175-	of conducting	AGAUR	-			37g	
		25186 (2019)	graphene/reduced	of	Marti				
	es		graphene oxide	Generalit					
	through		(rGO), which store	at de	Rovir				
	carbon		charge mainly	Cataluny	a, I;				
	nanotub		through electric	aAgencia	1				
		1			Ст				
1	e		double-layer	de Gestio	İ , I ;				
	e loading		double-layer mechanisms, covered		Gyorg				

r	nitroge	nanostructures, for	aris de	
	-	adding	Recerca	
1		pseudocapacitance,	Agaur	
		were fabricated	(AGAU	
		through a matrix	R) [2017	
		assisted pulsed laser	SGR	
		evaporation	1086];	
		technique. The	Spanish	
		incorporation of	Ministry	
		multiwall carbon	of	
		nanotubes	Economy	
		(MWCNTs)	and	
		provokes an increase		
		of the porosity and	iveness,	
		thus, a substantial	through	
		enhancement of the	the	
		electrodes'	"Severo	
		capacitance (from 4	Ochoa"	
		to 20 F cm(-3) at 10	Program	
		mV s(-1)).	me for	
		Volumetric	Centres	
		capacitances of 34 F	of	
		cm(-3) were also	Excellen	
		obtained with	ce in RD	
		electrodes containing	[SEV-	
		just carbon	2015-	
		nanotubes coated with NiO	0496]	
		nanostructures.		
		Moreover, the use of		
		nitrogen containing		
		precursors		
		(ammonia, urea) for		
		laser-induced N-		
		doping of the		
		nanocarbons also		
		provokes a notable		
		increase of the		
		capacitance.		
		Remarkably, N-		
		containing groups in		
		rGO-MWCNTs		
		mainly add electric		
		double layer charge		
		storage, pointing to		
		an increase of		

			electrode porosity, whereas redox reactions contribute with a minor diffusion fraction. It was also observed that the loading of carbon nanotubes leads to an increase of diffusion- controlled charge storage mechanisms versus capacitive ones in rGO-based electrodes, the opposite effect being observed in graphene electrodes. Single-phase Ce3+- doped BaTiO3						
3.	Influen ce of Sinterin g Strateg y on the Charact eristics of Sol- Gel Ba1- xCexTi 1- x/4O3 Cerami cs	<i>NANOMATERI</i> <i>ALS</i> , 9 ,1675 (2019)	powders described by the nominal formula Ba1- xCexTi1-x/4O3 with x = 0.005 and 0.05 were synthesized by the acetate variant of the sol-gel method. The structural parameters, particle size, and morphology are strongly dependent on the Ce3+ content.	Romania n CNCS- UEFISC DI Project [PN-III- P4-ID- PCE- 2016- 0072]	Stanci u, CA; Pintili e, I; Surdu, A; Trusc a, R; Vasile , BS; Eftimi e, M; Iancul escu, AC	4.034	0.704	10.3390/ nano912 1675	Q1

 	1	 	I	
	the XRD data and			
	the dielectric and			
	hysteresis			
	measurements reveal			
	that at room			
	temperature, the			
	specimen with low			
	cerium content ($x =$			
	(0.005) was in the			
	ferroelectric state,			
	while the samples			
	with significantly			
	higher Ce3+			
	concentration ($x =$			
	(0.05) were found to			
	be in the proximity of the ferroelectric-			
	paraelectric phase transition. The			
	sample with low			
	solute content after			
	spark plasma			
	sintering exhibited			
	insulating behavior,			
	with significantly			
	higher values of			
	relative permittivity			
	and dielectric losses			
	over the entire			
	investigated			
	temperature range			
	relative to the			
	conventionally			
	sintered sample of			
	similar composition.			
	The spark-plasma-			
	sintered Ce-BaTiO3			
	specimen with high			
	solute content ($x =$			
	0.05) showed a fine-			
	grained			
	microstructure and			
	an almost			
	temperature-			
	independent colossal			
	dielectric constant			

Anir Orig Bioa ve Hydr yapa Thin Film Synt ized RF- Mag ron Sput ng or 3D Print Cran Impl s	in cti rox tite s hes by METALS,9,133 2 (2019) net teri n ed ial	which originated from very high interfacial polarization. Ti6Al4V cranial prostheses in the form of patterned meshes were 3D printed by selective laser melting in an argon environment; using a CO2 laser source and micron- sized Ti6Al4V powder as the starting material. The size and shape of prostheses were chosen based on actual computer tomography images of patient skull fractures supplied in the framework of a collaboration with a neurosurgery clinic. After optimizations of scanning speed and laser parameters, the printed material was defect-free (as shown by metallographic analyses) and chemically homogeneous, without elemental segregation or depletion. The prostheses were coated by radio- frequency magnetron sputtering (RF-MS) with a bioactive thin layer of hydroxyapatite using	(PED241 /2017), PN-III- P1-1.1- TE- 2016- 2015 (TE136/2 018), PN-III- P1-1.1- PD- 2016- 1568 (PD6/20 18)]; PCCDI- UEFISC DI [PN- III-P1- 1.2- PCCDI- 2017- 0062, 58PCCD I/2018, 2, 21N/201 9]; Romania	Chioi basu, D; Duta, L; Popes cu- Pelin, G; Popa, N; Milod in, N; Iosub, S; Balesc u, LM; Galca, AC; Popa, AC; Oktar, FN; Stan, GE; Popes cu, AC	2.259	0.361	10.3390/ met9121 332	Q1
--	---	--	--	--	-------	-------	----------------------------	----

 				1	
	a bioceramic powder	-			
	derived from	of			
	biogenic resources	Research			
	(Bio-HA). Initially	and			
	amorphous, the films	Innovatio			
	were converted to	n,			
	fully-crystalline form	PCCDI-			
	by applying a post-	UEFISC			
	deposition thermal-	DI within			
	treatment at 500	PNCDI			
	degrees C/1 h in air.	III [PN-			
	The X-ray diffraction	III-P1-			
	structural	1.2-			
	investigations	PCCDI-			
	indicated the phase	2017-			
	purity of the	0224,			
	deposited films	77PCCD			
	composed solely of a	I/2018];			
	hexagonal	[16N/201			
	hydroxyapatite-like	9]			
	compound. On the				
	other hand, the				
	Fourier transform				
	infrared				
	spectroscopic				
	investigations				
	revealed that the				
	biological				
	carbonatation of the				
	bone mineral phase				
	was well-replicated				
	in the case of				
	crystallized Bio-HA				
	RF-MS implant				
	coatings. The in vitro				
	acellular assays,				
	performed in both				
	the fully inorganic				
	Kokubo's simulated				
	body fluid and the				
	biomimetic organic-				
	inorganic McCoy's				
	5A cell culture				
	medium up to 21				
	days, emphasized				
	both the good				

		resistance to degradation and the biomineralization capacity of the films. Further in vitro tests conducted in SaOs-2 osteoblast-like cells showed a positive proliferation rate on the Bio-HA RF-MS coating along with a good adhesion developed on the biomaterial surface by elongated membrane protrusions. Staggered gap radial					
Core- shell nanowit e arrays based on ZnO for water stable photoca talysts	<i>SCIENTIFIC REPORTS,9,17</i> 268 (2019)	heterojunctions based on ZnO-CuxO core-shell nanowires are used as water stable photocatalysts to harvest solar energy for pollutants removal. ZnO nanowires with a wurtzite crystalline	e Agency for Higher Educatio n, Research , Develop ment and Innovatio n Funding (UEFISC	, A; Preda, N; Bereg oi, M; Kuncs er, A; Apost ol, N; Popa, C; Socol, G; Dicule	1.286	10.1038/ s41598- 019- 53873-0	Q1

phenomena at the junction and at the interface between the nanowires and water based solutions. The 2017,	
interface between the 103528, nanowires and water IDEI124/ based solutions. The 2017,	
nanowires and water IDEI124/ based solutions. The 2017,	
nanowires and water IDEI124/ based solutions. The 2017,	
methylene blue 12PFE/2	
degradation 018,	
mechanism is PN18-11,	
discussed taking into 3N/2018]	
consideration the	
dissolution of ZnO in	
water based solutions	
for ZnO nanowires	
and ZnO-CuxO core-	
shell nanowires with	
different shell	
thicknesses. An	
optimum thickness	
of the CuxO layer is	
used to obtain water	
stable photocatalysts,	
where the ZnO-	
CuxO radial	
heterojunction	
enhances the	
separation and	
transport of the	
photogenerated	
charge carriers when	
irradiating with UV-	
light, leading to swift	
pollutant	
degradation.	
Structur Phosphate-tellurite Romania	
e and glasses exhibit n	
low magnetic properties, Ministry	
field JOURNAL OF due to the presence of	
magneti NON- of the small metallic Research 10.1016	/j
c CRYSTALLINE Te colloids which and Polosa inoncr	's
6. $\begin{bmatrix} c \\ properti \end{bmatrix}$ SOLIDS, 524 ,U were revealed in low Innovatio n, S $\begin{bmatrix} 2.6 \\ 0.414 \end{bmatrix}$ $\begin{bmatrix} 0.414 \\ 01.2019 \end{bmatrix}$	
es in NSP 119651 field magnetic n, 119651	
phosph (2019) circular dichroism. CCCDI-	
ate- These metallic UEFISCI	
tellurite colloids induce the [PN III-	
glasses red coloring of these PI-1.2-	

glasses together with PCCDI-	
the absorbance in the 2017-	
visible region. The 0871]	
temperature	
dependence of the	
absorption spectrurn	
and the A-term in	
magnetic circular	
dichroism are	
specific for Te	
metallic	
nanoparticles, which	
results during the	
melting procedure	
over 1000 degrees C	
due to the conversion	
of Te4+ in Te-0	
atoms. The X-ray	
photoelectron	
spectroscopy	
supports this fact due	
to the presence of	
small peaks as	
satellites in the	
region of Te 3d core-	
level spectrum.	
Quantification of	
these satellites	
compared with Te	
3d(3/2) and 3d(5/2)	
peaks suggests a	
14% concentration of	
Te metallic	
nanoparticles in	
these phosphate-	
tellurite glasses. The	
presence of metallic	
particles induces the	
crystallization effects	
of Te micrograins	
upon thermal	
treatments at higher	
temperatures.	
SynthesAPPLIEDThe boneEuropeanDasca10.1	$\begin{bmatrix} 016/j \\ usc 2 \end{bmatrix}$ Q1
7. is and SURFACE regeneration field Regional lu, 5.155 0.671 ans	usc.2 Q1
charact SCIENCE,494, targeted lately the Develop CA;	

	erizatio	pp.335-352	development of new	ment	Maida	019.07.0	
1	n of	(2019)	-	Fund	niuc,	98	
	biocom	(2017)	1	through	A;	70	
	patible			Competit			
	polyme		-	iveness	le,		
	r-		optimal design of	Operatio	AM;		
	ceramic			nal	Voicu,		
1	film		composites for	Program	SI;		
1	structur		guided bone	2014-	Mach		
	es as		regeneration	2014-2020,	edon-		
	favorab		-	Priority	Pisu,		
	le		cellulose acetate	axis 1, ,	T;		
1	interfac		(CA) and	Innovativ			
	e in			e	GE;		
			• • • •				
	guided		by varying three	Technolo			
	bone		1	gies for Materials	an, A;		
	regener						
	ation		-		n, V;		
			CA matrix (in the	Assuranc			
			0 / .	e in	iac,		
			-	Health,	IV;		
			(max. 20 mu m vs.	Energy	Micul		
				and	escu,		
			U	Environ	F		
			time required for HA				
			powder dispersion in				
			the CA matrix $(1 \min 1)$				
			,	Innovativ			
			polymer-ceramic	e M			
			film structures	Manufact			
			- -	uring			
			phase inversion by	Solutions			
				of Smar			
			method was used.	[P_36_6			
			This involved the	11,			
			deposition of	107066];			
			composite solution	Romania			
			(i.e. CA with 20-40	n			
			<i>,</i> 0	National			
			11 / 2	Authorit			
			Ũ	y for			
				Scientific			
			The obtained film	Research			
				and			
			U	Innovatio			
			of	n, CNCS			

			1 1.1		1				
			morphocompositiona						
			l and structural	UEFISC					
			properties. The	DI [PN-					
			surface features	III-P2-					
			evaluation was	2.1-PED-					
			achieved by surface	2016-					
			wettability,	0892]					
			roughness, water	· · · ·]					
			permeation, protein						
			retention and in vitro						
			evaluation of						
			MC3T3-E1						
			morphology and						
			viability. Further,						
			ceramic particle						
			distribution						
			throughout samples						
			volume was provided						
			by computed						
			tomography						
			methods. These						
			investigations						
			targeted the						
			validation of the						
			prepared composite						
			film structures as						
			viable solutions for						
			guided bone						
			regeneration.						
			The main objective	Executiv					
	PCL-		of the tissue	e Unit	lingo				
				for	Jinga,				
	ZnO/Ti		engineering field is		SI;				
	O2/HA		to regenerate the		Zamfi				
	p				rescu,				
	Electros		body by developing	Educatio	1 1				
	pun		biological substitutes		Voicu,			10.0000	
	Compo	POLYMERS,1	that maintain,	Research	1 '			10.3390/	
8.	site	1 ,1793 (2019)	restore, or improve	,	Encul	3.164	0.592	polym11	Q1
	Fibers	-,1,75 (2017)	original tissue	Develop	escu,			111793	
	with	ith pplica ons in	function. In this	ment and					
	Applica		context, by using the	Innovatio	Evang				
	tions in		electrospinning	n	helidis				
	Tissue		technique, composite	(UEFISC	, A;				
	Enginee		scaffolds based on	DI)	Busui				
	ring		polycaprolactone	[66/2018,	oc, C				
			(PCL) and inorganic	PN-III-					
			,, _,, _						

		-					
		powders were	P1-1.1-				
		successfully	TE-				
		obtained, namely:	2016-				
		zinc oxide (ZnO),	0871];				
		titanium dioxide	Politehni				
		(TiO2) and	ca				
		hydroxyapatite	Universit				
		(HAp). The novelty	y of				
		of this approach	Buchares				
		consists in the	t				
		production of fibrous					
		membranes based on					
		a biodegradable					
		polymer and loaded					
		with different types					
		of mineral powders,					
		each of them having					
		a particular function					
		in the resulting					
		composite.					
		Subsequently, the					
		precursor powders					
		and the resulting					
		composite materials were characterized					
		by the structural and					
		morphological point					
		of view in order to					
		determine their					
		applicability in the					
		field of bone					
		regeneration. The					
		biological assays					
		demonstrated that the					
		obtained scaffolds					
		represent support					
		that is accepted by					
		the cell cultures.					
		Through simulated					
		body fluid					
		immersion, the					
		biodegradability of					
		the composites was					
		highlighted, with					
		fiber fragmentation					
		and surface					
L	I	1	1	L			

			degradation within						
			the testing period.						
			Artificial complex-	U.S.					
			oxide	Departm					
			heterostructures	ent of					
			containing ultrathin	Energy,	Arab,				
			buried layers grown	Office of	1 '				
			along the	Science,	1				
			pseudocubic [111]	Office of					
			direction have been	Basic	Koksa				
			predicted to host a	Energy	l, O;				
			plethora of exotic	Sciences,					
			quantum states arising from the	Materials Sciences,	· ·				
			graphene-like lattice	and	rasena				
			geometry and the	Engineer					
			interplay between	ing	Midde				
			strong electronic	Division	y, S;				
	Electro		correlations and band		Karee				
	nic		topology. To date,	States	v, M;				
	Structur		however, electronic-	Departm	Kuma				
	e of a		structural	ent of	r, S;				
	Graphe		investigations of	Energy	Husan			10.1021/	
9.		<i>LETTERS</i> , 19 ,	such atomic layers	(DOE)	u,	12.279	4.018	acs.nanol	Q1
	al	pp.8311-8317	remain an immense	[DE-	MA; Von a			ett.9b039 62	
	ar Crystal	(2019)	challenge due to the shortcomings of	SC00192 97]; U.S.				02	
	of		conventional	Army	Gu, L;				
	NdNiO		surface-sensitive	Research					
	3		probes with typical	Office	V,				
	-		information depths	[W911N					
			of a few angstroms.	F-15-1-	Lee,				
			Here, we use a	0181];	TL;				
			combination of bulk-	Gordon	Minar,				
			sensitive soft X-ray	and Betty	· ·				
			angle-resolved	Moore	Pentc				
			photoelectron	Foundati	heva,				
			spectroscopy (SX-	on ED:OS	R;				
			ARPES), hard X-ray photoelectron	EPiQS Initiative	Chakh alian,				
			spectroscopy	[GBMF4	· ·				
			(HAXPES), and	534];	Gray,				
			state-of-the-art first-	German	AX				
			principles	Science					
			calculations to	Foundati					
			demonstrate a direct	onGerma					

			.						
			and robust method	n					
			for extracting	Research					
			momentum-resolved	Foundati					
			and angle-integrated	on					
			valence-band	(DFG)					
			electronic structure	[CRC/T					
			of an ultrathin	RR80];					
			buckled graphene-	DST					
			like layer of NdNiO3	Nanomis					
			confined between	sion					
			two 4-unit cell-thick	Grant					
			layers of insulating	[DST/N					
			LaAlO3. The	M/NS/20					
			momentum-resolved						
			dispersion of the	Ministry					
			buried Ni d states	of					
			near the Fermi level	Educatio					
			obtained via SX-	n, Youth,					
			ARPES is in	and					
			excellent agreement	Sports of					
			with the first-	Czech					
			principles calculations and	Rep.					
				[CZ.02.1.					
			establishes the	01/0.0/0.					
			realization of an	0/15.003/					
			antiferro-orbital	0000358]					
			order in this artificial						
			lattice. The						
			HAXPES						
			measurements reveal						
			the presence of a						
			valence-band						
			bandgap of 265						
			meV. Our findings						
			open a promising						
			avenue for designing						
			and investigating						
			quantum states of						
			matter with exotic						
			order and topology						
			in a few buried						
			layers.						
	Designi	NFW	The fundamental	Romania	Dorin			10.1088/	
	-	JOURNAL OF	phenomena at		1			1367-	
10.	U U		ferroelectric	n Ministry	R; Filin	3.783	1.489	1507- 2630/ab4	Q1
				Ministry	Filip,				
	nal	13005 (2019)	interfaces have been	of	LD;			d8b	

ferroele	the subject of	Research	Pintili		
ctric	thorough theoretical	and	e, L;		
interfac	and computational	Innovatio			
es from	studies due to their	n through			
first-		the Core			
	usefulness in a large				
principl	variety of emergent	Program	u, N		
es:	electronic devices,	of NIMP			
dipoles	solar cells and	[PN18-			
and	catalysts.	110101,			
band	Ferroelectricity	PFE-			
bending	determines interface	CDI-339,			
at oxide	band-bending and	12];			
heteroju	shifts in electron	PCCF			
nctions	energies, which can	project -			
	be beneficial or	Ministry			
	detrimental to device				
	performance.	Research			
	However, the	and			
	underlying	Innovatio			
	mechanisms are still	n though			
	the subject of debate	UEFISC			
	and investigation, as	DI [PN-			
	a deeper	III-P4-			
		ID-			
	electrochemistry is	PCCF-			
	required to develop	2016-			
	bona fide design	0047, 16]			
	principles for				
	functional				
	ferroelectric surfaces				
	and interfaces. Here,				
	using first principles				
	calculations within				
	the GGA + U				
	formalism, we				
	investigate the				
	problem of band				
	alignment in non-				
	defective,				
	asymmetric				
	SrRuO3/PbTiO3/SrR				
	uO3 capacitors with ultra-thin				
	ferroelectric layers.				
	The effects of the				
	dielectric size on the				

			polar distortion						
			stability and						
			interface-specific						
			properties are						
			analyzed. It is shown						
			that the critical size						
			of the dielectric for						
			polarization						
			switching is						
			approximate to 2 nm						
			(5 PbTiO3 u.c.).						
			Below this limit						
			there is no bulk-like						
			region in the						
			dielectric, the space						
			charge accumulated						
			at interfaces leads to						
			the presence of gap						
			states in the whole						
			PbTiO3 layer and						
			ferroelectricity						
			vanishes. We draw						
			the band alignment						
			diagrams as given by						
			the band line-up and						
			band structure terms,						
			as well as by taking						
			Ti 3s semi-core						
			states as reference. In						
			the ferroelectric						
			structures, both						
			approaches predict a						
			strong effect of						
			band-bending on the						
			type of contact,						
			Schottky or Ohmic,						
			at the asymmetric						
			interfaces. The effect						
			of interface states on						
			the interface dipole						
			amplitude and band						
			alignment is						
			discussed.						
	Fluores	MICROPORO	Three novel	EU	Tudos				
11.	cent	US AND	fluorescent	(ERDF)E		4.182	0.67	10.1016/j	01
			mesoporous silica	uropean	Culita,		0.07	.microme	× 1
	Journari			ar opean	Cunta,				

n-	S	composites were	Union	DC;		so.2019.	
	MATERIALS,2	-	(EU)	Voice		109583	
	88 ,UNSP	covalent	[INFRA	scu,			
mesopo			NANOC	M;			
rous		amino-4-	HEM	Musu			
SBA-15		(trifluoromethyl)cou	19/01.03.				
nanoco		marin, 6-amino-	2009];	AM;			
mposite		chromen-2-one and	Romania	Kuncs			
:		7-amino-4-methyl-3-	n	er,			
Physico		coumarinylacetic	Governm	AC;			
-		acid, respectively,	ent	Bleotu			
chemic		inside the channels	[INFRA	, C;			
al		of mesoporous silica	NANOC	Popa,			
charact		SBA-15. Presence of		M;			
erizatio		fluorescent moieties	19/01.03.	Marut			
n and		was assessed by	2009];	escu,			
interacti		elemental analysis,	Romania	L;			
on with		thermal analysis,	n	Chifiri			
prokary		infrared, UV-Vis, Si-	Ministry	uc,			
otic and			of	MC;			
eukaryo		CP/MAS NMR, and	Research	Nicole			
tic cells		fluorescence	and	scu,			
		1 17	Innovatio	· ·			
		Reduction of specific		Delea			
		surface area of the	18-	nu, C			
		composites by 50-	110201];				
		60% and also the	"Petru				
		average pore size	Poni"				
		-	Institute				
		nm compared to	of				
		unfunctionalized	Macrom				
		SBA-15 was	olecular				
		evidenced by N-2	Chemistr				
		adsorption	y through				
		desorption analysis.	the				
		Their antioxidant,	European				
		antimicrobial activity					
		and cytotoxicity on	Fund for				
		HeLa-2 cells were	Regional				
			Develop				
			ment, Compotit				
		potential applications of the obtained	iveness				
		compounds. The					
		obtained results	Operatio nal				
		recommend the	Program				
			riografii				

	mesoporous nanocomposites as potential candidates for the development of novel probes for the in situ tracking of oxidative stress, as well as for antimicrobial applications. Trilayer memory capacitors of control HfO2/floating gate	0.2016, MySMIS : 107464] Executiv e Agency for					
Orthorh ombic HfO2 with embedd ed Ge nanopar ticles in nonvola tile memori es used for the detectio n of ionizing radiatio n	orthorhombic/tetrago nal nanocrystals	19/2018, PCCDI 75/2018] ; Romania n Ministry of Research and Innovatio	Lepad atu, AM; Stavar ache, I; Dasca lescu, I; Maral oiu, AV; Negril a, C; Logof atu, C; Stoica , T; Teodo rescu, VS; Ciurea	3.399	0.744	10.1088/ 1361- 6528/ab3 52b	Q1

			the control oxide, HfO2 NCs are monoclinic. Orthorhombic HfO2 has ferroelectric properties and therefore enhances the memory window produced by charge storage in Ge NPs to above 6 V. The high sensitivity of 0.8 mV Gy(-1) to a particle irradiation from a Am-241 source was measured by monitoring the flatband potential during radiation exposure after electrical writing of the memory.	N/08.02. 2019]					
13.	Low value for the static backgro und dielectri c constan t in epitaxia l PZT thin films	<i>REPORTS</i> , 9 ,14 698 (2019)	values of ferroelectric material constants, the problem of the magnitude of static dielectric constant remains unsolved. In this article it is	n Ministry of Research and Innovatio n [CEPRO FER/PN- III-P4- ID- PCCF- 2016- 0047]; Core Program of NIMP; [12PFE/2	Chiril a, CF; Hrib, L;	4.011	1.286	10.1038/ s41598- 019- 51312-8	Q1

called static background dielectric constant, or just background dielectric constant) can be very low (between 10 and 15), possibly converging towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with constant capacitance at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have imploration imploration implcations in future analysis of conduction mechanisms in ferroelectric-based <th></th> <th></th> <th>background dielectric constant, or just background dielectric constant) can be very low (between 10 and 15), possibly converging towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			background dielectric constant, or just background dielectric constant) can be very low (between 10 and 15), possibly converging towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with						
dielectric constant, or just background dielectric constant) can be very low (between 10 and 15), possibly converging towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with constant capacitance at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectric based			dielectric constant, or just background dielectric constant) can be very low (between 10 and 15), possibly converging towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with						
or just background dielectric constant) can be very low (between 10 and 15), possibly converging towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with constant capacitance at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			or just background dielectric constant) can be very low (between 10 and 15), possibly converging towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with						
dielectric constant) can be very low (between 10 and 15), possibly converging towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with constant capacitance at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			dielectric constant) can be very low (between 10 and 15), possibly converging towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with						
can be very low (between 10 and 15), possibly converging towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with constant capacitance at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			can be very low (between 10 and 15), possibly converging towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with						
(between 10 and 15), possibly converging towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with constant capacitance at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			(between 10 and 15), possibly converging towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with						
(between 10 and 15), possibly converging towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with constant capacitance at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			(between 10 and 15), possibly converging towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with						
possibly converging towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with constant capacitance at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			possibly converging towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with						
towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with constant capacitance at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectric-based			towards the value in the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with						
the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with constant capacitance at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectric-based			the optical domain. It is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with						
is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with constant capacitance at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			is also found that the natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with						
natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with constant capacitance at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			natural state of an ideal, mono-domain, epitaxial ferroelectric is that of full depletion with						
ideal, mono-domain, epitaxial ferroelectric is that of full depletion with constant capacitance at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			ideal, mono-domain, epitaxial ferroelectric is that of full depletion with						
epitaxial ferroelectric is that of full depletion with constant capacitance at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			epitaxial ferroelectric is that of full depletion with						
is that of full depletion with constant capacitance at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			is that of full depletion with						1 1
depletion with constant capacitance at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			depletion with				1		
constant capacitance at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based									
at voltages outside the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			constant capacitance						
the switching domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based									
domain. The findings are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			at voltages outside						
are based on experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			the switching						
experimental results obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			domain. The findings						
obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			are based on						
obtained from a new custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			experimental results						
custom method designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based									
designed to measure the capacitance- voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based									
the capacitance-voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based									
voltage characteristic in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			-						
in static conditions, as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			-						
as well from Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based									
Rayleigh analysis. These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-basedImage: Constant of the second of the									
These results have important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based									
important implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based									
implications in future analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based									
analysis of conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based									
conduction mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			-						
mechanisms in ferroelectrics and theoretical modeling of ferroelectric-based			analysis of						
ferroelectrics and theoretical modeling of ferroelectric-based			conduction						
theoretical modeling of ferroelectric-based			mechanisms in						
theoretical modeling of ferroelectric-based			ferroelectrics and						
of ferroelectric-based									
devices			devices.						
	O_{-1}			.	D - 11				├┦
Optical Using UV-VIS European Baibar	-		-	-				10 1000/	
properti SCIENTIFIC absorption Regional ac, M; 10.1038/			-						
$ 14 $ es of $ _{REPORTS} 0 1_{4} $ spectroscopy, $ $ Develop $ $ Smara $ _{4} 0 1 1 $ $ _{1286} $ s ⁴¹⁵⁹⁸⁻ $ _{01}$		REPORTS Q 14		-		4.011	1.286		01
ionc 278 (2019) photoluminescence ment inda, i; 019-		278 (2010)	1						× 1
$ \cdot 1 \cdot = \frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} / DI \rangle = 1 \qquad I = 1$	acid in	, , ,	(PL) and	Fund	Nila,			50721-z	
acid in (PL) and Fund Nila, 50/21-Z	phosph		photoluminescence	under the	A;				

ate	excitation (PLE), the	Competit	Serbsc		
buffer	photodegradation	iveness	hi, C		
solution	reactions of folic	Operatio			
s: the	acid (FA) in	nal			
influenc	phosphate buffer	Program			
e of pH	(PB) solutions were	[58/05.09			
and UV	studied. Regardless	.2016];			
irradiati	of the PB solution's	National			
on on	pH, the UV-VIS	Authorit			
the UV-	spectra showed a	y for			
VIS	gradual decrease in	Scientific			
absorpti	absorbance at 284	Research			
on	nm simultaneous	and			
spectra	with an increase in	Innovatio			
and	the absorbance of	n as an			
photolu	another band in the	Intermed			
minesce	spectral range of	iate Body			
nce	320-380 nm, which	on behalf			
	was downshifted	of the			
	under UV	Ministry			
	irradiation. The	of			
	relative intensity of	European			
	the FA PL band,	Founds			
	situated in the	as			
	spectral range 375-	Managin			
	600 nm, was	g			
	dependent on the pH	Authorit			
	of the PB solution.	y for			
	The FA PL intensity	Operatio			
	increased as	nal			
	increasing UV	Program			
	irradiation time up to	-			
	281 min. in PB	iveness			
	solutions with pH	(POC)			
	values of 6.4 and 5.4.	[2626/04.			
	Under an emission	12.2017]			
	wavelength of 500				
	nm, the position of				
	the FA PLE				
	spectrum changed as				
	the PB solution pH				
	varied from 7 to 5.4				
	and the irradiation				
	time increased to 317				
	min. These changes				
	were correlated with				

		photodegradation products, namely, pterine-6-carboxylic acid and p-amino- benzoyl-L-glutamic acid. According to UV-VIS spectroscopy and PL and PLE studies, the presence of various excipients in commercial pharmaceutical tablets does not affect the photodegradation of FA in PB solutions. Using IR spectroscopy, new evidences for the formation of the two photodegradation products of FA in PB solutions are shown.					
15.	<i>NANOMATERI</i> <i>ALS</i> , 9 ,1465 (2019)	Europium substituted bismuth ferrite powders were synthesized by the sol-gel technique. The precursor xerogel was characterized by thermal analysis. Bi1-xEuxFeO3 (x = 0-0.20) powders obtained after thermal treatment of the xerogel at 600 degrees C for 30 min were investigated by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), transmission electron	Romania n National Authorit y for Scientific Research , CNCS- UEFISC DI [PN- III-P4- ID-PCE- 2016- 0072]	Surdu, VA; Trusc a, RD; Vasile , BS; Oprea, OC; Tanas a, E; Diama ndesc u, L; Andro nescu, E; Iancul escu, AC	0.704	10.3390/ nano910 1465	Q1

			microscopy (TEM), Raman spectroscopy, and Mossbauer spectroscopy. Magnetic behavior at room temperature was tested using vibrating sample magnetometry. The comparative results showed that europium has a beneficial effect on the stabilization of the perovskite structure and induced a weak ferromagnetism. The particle size decreases after the introduction of Eu3+ from 167 nm for x = 0 to 51 nm for x = 0 to 51 nm for x = 0.20. Photoluminescence spectroscopy showed the enhancement of the characteristic emission peaks					
			emission peaks intensity with the increase of Eu3+ concentration.					
16.	c and magnet o-	<i>JOURNAL OF NON- CRYSTALLINE SOLIDS</i> , 521 ,U NSP 119545 (2019)	The work is dedicated to the investigation of optical, structural, magnetic and magneto-optical properties of an aluminophosphate glass doped with Dy3+ ions, for specific applications as Faraday rotators in the visible spectral domain. The vitreous	ca, L;	2.6	0.414	10.1016/j .jnoncrys ol.2019.1 19545	Q1

phosph	material belongs to	[186/201	M;		
ate	the 16Li(2)O-	2, 7-	Kuncs		
glass	8Al(2)O(3)-6BaO	081/2013	er, V;		
	center dot	-M-	Galca,		
	60P(2)O(5)-	ERA.NE	AC;		
	10Dy(2)O(3) system.	Τ,	Beldic		
	Optical homogeneity		eanu,		
	measured by a	9,	A;		
	polariscopic method,		Volce		
	as well as by	9,	anov,		
	polarimetry and	21N/201	A;		
	interferometry	9, PN-	Eftimi		
	revealed an optical	III-P1-	e, M		
	quality glass. Time	1.2-			
	dependent electrical	PCCDI-			
	conductance	2017-			
	measurements have	0871,			
	shown a high	47PCCD			
	chemical strength of	I/2018,			
	the glass. Optical	PN-III-			
	absorption of the	P1-1.2-			
	doped glass in the	PCCDI-			
	visible domain	2017-			
	evidenced the	0619,			
	specific absorption	42PCCD			
	lines of dysprosium	I/2018];			
	ions, whereas	Ministry			
	structural	of			
	investigations made	Research			
	by FTIR and Raman	and			
	spectroscopy put in	Innovatio			
	evidence the vitreous		1 1		
	network forming role				
	of phosphorous	I -			
	pentoxide. Magnetic	Develop			
	and magneto-optical	ment of			
	measurements	the			
	demonstrated	National			
	paramagnetic	R&D			
	features of the doped	System,			
	glass, as well as a	Subprogr			
	Verdet constant of	am 1.2 -			
	about -0.05	Institutio			
	min/Oe/cm at 600	nal			
	nm wavelength.	Performa			
		nce -			

		The bone remodeling	Projects for Excellen ce Financin g in RDI [19PFE/1 7.10.201 8]					
17. s with	<i>APPLIED SURFACE SCIENCE</i> , 489 , pp.226-238 (2019)	The bone remodeling research field has shifted focus towards sustainable, eco- friendly and reproducible manufacturing technologies of 3D structures. It is now accepted that a suitable internal architecture and an active interface between the 3D structure and host bone-tissue constitute the two most critical traits for a successful bone tissue engineering application. A completely reproducible synthesis set-up was recently developed for calcium phosphate (CaP) bioceramics preparation from natural highly available marble and seashells. The influence of the pressing force in the fabrication process of porous 3D scaffolds derived	Romania n Ministry of Research and Innovatio n, CCCDI - UEFISC DI [PN- III-P1- 1.2- PCCDI- 2017- 0062, 58, 2]; European Regional Develop ment Fund through Competit iveness Operatio nal Program 2014- 2020, Priority axis 1 [P_36_6 11, 107066]	Moca nu, AC; Micul escu, M; Mach edon- Pisu, T; Maida niuc, A; Ciocoi u, RC; Ionita, M; Pasuk, J; Stan, GE; Micul escu, F	5.155	0.671	10.1016/j .apsusc.2 019.05.3 54	Q1

from such CaPs by a
sacrificial porogen
method using natural
fibers is here
investigated. The
fiber-ceramic based-
products underwent
thermal processing,
followed by surface
and volume features
characterization.
After fibers' thermal
removal,
interconnected 3D
channels were
obtained, which
could allow a
suitable in vivo
irrigation and
implant-associated
negative side-effects
prevention. This
method provides the
prospect of tunable
HA/beta-TCP
content in the case of
both precursors'
derived-scaffolds.
The morphological
results revealed the
internal and external
pores dimensions,
modulated through
different pressing
forces that led to a
controlled total
porosity, evidenced
by computed
tomography
techniques. Further,
the wettability and
mechanical features
supported the
advance of the novel
porous-ceramic-
structure designs as

18.	1 1	NANOSCALE, 11, pp.16743- 16754 (2019)	1 1 7	n Ministry of Research and Innovatio n [PN1811 0201, PN-III- P4-ID-	Avra m, D; Colbe a, C; Florea , M; Lazar, S; Stropp a, D; Tisean u, C	6.97	1.591	10.1039/ c9nr0434 5d	Q1
-----	------------	---	--------------	---	--	------	-------	----------------------------	----

monoclinic phase
transformation in
rationally designed
Er doped ZrO2
nanoparticles. Rare
evidence of a
heterogeneous
dopant distribution
leading to the
coexistence of two
polymorphs in a
single nanoparticle is
revealed by Z- and
phase contrast
transmission electron
microscopy (TEM).
Despite their spatial
proximity, Er in the
two polymorphs are
spectroscopically
isolated, i.e. they do
not communicate by
energy transfer.
Segregated Er, which
is well imaged in
TEM, is absent in
UPC, while the
minor phase content
overlooked by X-ray
diffraction and TEM
is revealed by UPC.
The outstanding
sensitivity of
combined TEM and
UPC emission to
subtle deviations
from uniform doping
in the diluted
concentration regime renders such an
approach relevant for various functional
oxides supporting
lanthanide dopants as
emitters.

CuxCe MgAl0 mixed oxide catalys s derived from 19. multica ionic LDH precurs ors for methar e total oxidati n	t APPLIED CATALYSIS A- GENERAL, 586 ,117215 (2019)	A series of five Cu(x)CeMgAlO mixed oxides with different copper contents (x) ranging from 6 to 18 at. % with respect to cations, but with fixed 10 at. % Ce and Mg/Al atomic ratio of 3, were prepared by thermal decomposition of layered double hydroxide (LDH) precursors at 750 degrees C. The solid containing 15 at. % Cu, i.e. Cu (15)CeMgAlO, was also calcined at 550 and 650 degrees C. Powder XRD was used to characterize the crystalline structure and SEM- EDX was used to monitor the morphology and chemical composition of both as prepared and calcined materials. Additionally, the textural properties and the reducibility of the mixed oxide catalysts were studied by nitrogen adsorption/desorptio n and temperature programmed reduction with hydrogen (H-2-TPR) techniques, respectively. X-ray	Al- Aani, HMS; Iro, E; Chirra , P; Feche e, I; Badea , M; Negril a, C; Popes cu, I; Olea, M; Marcu , IC	t 4.63	0.77	10.1016/j .apcata.2 019.1172 15	Q1
---	---	---	--	-----------	------	--	----

photoelectron spectroscopy (XPS) was used to determine the chemical state of the elements on the catalyst surface and i	
was used to determine the chemical state of the elements on the catalyst surface and	
was used to determine the chemical state of the elements on the catalyst surface and	
chemical state of the elements on the catalyst surface and	
chemical state of the elements on the catalyst surface and	
elements on the catalyst surface and	
catalyst surface and	
the diffuse	
reflectance UV-vis	
spectroscopy, to	
obtain information	
about the	
stereochemistry and	
aggregation of	
copper in the Cu-	
containing mixed	
oxides. Their	
catalytic properties	
in the total oxidation	
of methane, used as a	
volatile organic	
compound (VOC)	
model molecule,	
were evaluated and	
compared with those	
of an industrial	
Pd/Al2O3 catalyst.	
Their catalytic	
behavior was	
explained in	
correlation with their	
physicochemical	
properties.	
Cu(15)CeMgAlO	
mixed oxide was	
shown to be the most	
active catalyst in this	
series, with a T-50	
(temperature	
corresponding to	
50% methane	
conversion) value of	
only ca. 45 degrees	
C higher than that of	
a commercial	
Pd/Al2O3 catalyst.	

		This difference becomes as low as ca. 25 degrees C for the Cu(15)CeMgAlO system calcined at 550 degrees C. The influences of the contact time and of the methane concentration in the feed gas on the catalytic performances of the Cu(15)CeMgAlO catalyst have been investigated and its good stability on stream was					
ne	IIoritiliJOURNAL OF MOLECULAR LIQUIDS, 290, UNSP 111184 (2019)eens	evidenced. New thermotropic lanthanidomesogens based on Eu(III), Sm(III) and Tb(III) with N-alkylated 4- pyridones mesogenic ligands, having two cyanobiphenyl groups attached via long alkoxy spacers, with 6, 9 and 10 carbons atoms in 3,5- positions of a benzyl unit, have been	 , PC; Manai la- Maxi mean, D;	4.561	0.58	10.1016/j .molliq.2 019.1111 84	Q1

nalized	confirmed by		
with	variable temperature		
cyanobi	X-ray powder		
	diffraction analysis.		
phenyl	The three N-		
groups			
	alkylated 4-		
	pyridones nematic		
	ligands reacted with		
	lanthanide nitrates to		
	yield new		
	lanthanidomesogens		
	with a stable and		
	reproducible smectic		
	A phase up to 125		
	degrees C. The		
	emission spectra of		
	the complexes have		
	shown the		
	characteristic		
	emission of the		
	lanthanide trivalent		
	ions, over the entire		
	temperature range of		
	SmA phase up to		
	isotropic state. The		
	dielectric		
	spectroscopy		
	measurements		
	performed in the		
	temperature range of		
	existence of the		
	liquid crystal phase,		
	both in the low		
	frequency (LF)		
	domain 0.01-10		
	MHz and in the high		
	frequency (HF)		
	range, 1 MHz-3		
	GHz, revealed three		
	dipolar relaxation		
	processes. The		
	characteristic times		
	have been obtained		
	by fitting the spectra		
	of the dielectric loss		
	with a two		

	component Havriliak-Negami function. The activation constant/energy was determined from the Vogel-Fiilcher- Tammann law. (C) 2019 Elsevier B.V. All rights reserved.				
21. Backact ion effects in cavity- coupled quantu m conduct ors	0,125416 the reduced density	N/08.02. 2019]; V; Reykjavi k Universit y [815051] ; Research Fund of the Universit y of IcelandIs tanbul	3.736	10.1103/ PhysRev B.100.12 5416	Q1

			otherwise in the Coulomb blockade. We also predict that a transient current passing through one subsystem triggers a charge transfer between the optically active levels of the second subsystem even if the latter is not connected to the leads. As a result of backaction, the transient current						
			through the open system develops Rabi oscillations (ROs) whose period depends on the initial state of the closed system. As a new class of	Chinese	Гло				
22.	Manipu lating the Optical Properti es of Carbon Dots by Fine- Tuning their Structur al Feature s	<i>CHEMSUSCH EM</i> , 12 , pp.4480-4486 (2019)	As a new class of sustainable carbon material, "carbon dots" is an umbrella term covering many types of materials. Herein, a broad range of techniques was used to develop the understanding of hydrothermally synthesized carbon dots, and it is shown how fine-tuning the structural features by simple reduction/oxidation reactions can drastically affect their excited-state properties. Structural and spectroscopic studies found that photoluminescence	governm ent; European regional Develop ment Fund through	u, N; Salva dori, E; Roessl er, MM; Ploen es, G; van Eck, ERH; Tanas e, LC; Feng, JY; Sun, YW; Yang,	7.804	1.625	10.1002/ cssc.201 901795	Q1

			features leads to ultrafast phonon- assisted relaxation and largely quenches the fluorescent quantum yields. This is arguably the first study to identify the dynamics of photoluminescence including Stokes shift and allow the relaxation pathways in these carbon dots to be fully resolved. This comprehensive investigation sheds light on how understanding the excited-state relaxation processes in different carbon structures is crucial	Edinburg h Instrume nts;	e, M; Jorge, AB; Sapel kin, A; Durra nt, J;				
23.	Probing single- unit- cell resolve d electron ic structur e modulat	<i>PHYSICAL</i> <i>REVIEW</i> <i>B</i> , 100 ,125119 (2019)	coupling at complex- oxide interfaces is a powerful platform for creating ultrathin layers with electronic and magnetic properties unattainable in the	ent of Energy (DOE), Office of Science,	M; dos Reis, RMS;	3.736	1.089	10.1103/ PhysRev B.100.12 5119	Q1

	ions in	design and control	Materials	EJ;		
	oxide	the electronic	Sciences			
	superlat	structure of such	and	A;		
1	tices	buried layers and	Engineer	1 ' 1		
	with	interfaces at a unit-	ing	u,		
	standin	cell level, a new		MA;		
	g-wave	challenge emerges to		Nems		
	photoe	be able to probe	States	ak, S;		
	mission	these engineered	Departm	Gullik		
		emergent phenomena	ent of	son,		
		with depth-	Energy	EM;		
		dependent atomic	(DOE)	Ciston		
		resolution as well as	[DE-	, J;		
		element- and orbital	SC00192	Stroco		
		selectivity. Here, we	97]; U.S.	v,		
		utilize a combination	Army	VN;		
		of core-level and	Research	Rondi		
		valence-band soft x-	Office	nelli,		
		ray standing-wave	[W911N	JM;		
		photoemission	F-15-1-	May,		
		spectroscopy, in	0133,	SJ;		
		conjunction with	W911NF	Gray,		
		scanning	-15-1-	AX		
		transmission electron	0181];			
		microscopy, to probe	U.S.			
		the depth-dependent	DOEUnit			
		and single-unit-cell	ed States			
		resolved electronic	Departm			
		structure of an	ent of			
		isovalent manganite	Energy			
		superlattice	(DOE)			
		[Eu0.7Sr0.3MnO3/L	-			
		a0.7Sr0.3MnO3] x	SC00123			
		15 wherein the	75];			
		electronic-structural	President			
		properties are	ial Early			
		intentionally	Career			
		modulated with	Award			
		depth via engineered				
		oxygen octahedra	Scientists			
		rotations/tilts and A-	and			
		site displacements.	Engineer			
		Our unit-cell	S (DECAG			
		resolved	(PECAS			
		measurements reveal	, í			
		significant	through			

	1	,	 	 _
	transformations in	the U.S.		
	the local chemical	Departm		
	and electronic	ent of		
	valence-band states,	Energy;		
	which are consistent	Swiss		
	with the layer-	Excellen		
	resolved first-	ce		
	principles theoretical	Scholars		
	calculations, thus	hip grant		
	opening the door for			
	future depth-resolved			
	studies of a wide	57]; U.S.		
	variety of	Departm		
	heteroengineered	ent of		
	material systems.	Energy,		
	-	Office of		
		Science,		
		Office of		
		Basic		
		Energy		
		Sciences		
		United		
		States		
		Departm		
		ent of		
		Energy		
		(DOE)		
		[DE-		
		AC02-		
		06CH11		
		357];		
		Office of		
		Science,		
		Office of		
		Basic		
		Energy		
		Sciences,		
		of the		
		U.S.		
		DOEUnit		
		ed States		
		Departm		
		ent of		
		Energy		
		(DOE)		
		(DOL) [DE-		

24.	Efficac y of anneali ng and fabricat ion paramet ers on photo- respons e of SiGe in TiO2 matrix	interest. In this work, a short-time furnace annealing of a SiGe/TiO2 system is applied to obtain	CDI [33/2016]; PCE project UEFISC DI [122/201 7]; Romania n Ministry of Research and Innovatio n through NIMP Core Program [PN19- 03, 21N/08.0 2.2019];	undss on, JT; Manol escu, A; Teodo rescu, VS; Ciurea , ML; Svava	3.399	0.744	10.1088/ 1361- 6528/ab2 60e	Q1
		therefore be of great interest. In this work, a short-time furnace annealing of a SiGe/TiO2 system is	2.2019]; Technolo gy Develop ment Fund of					

			depositing alternate layers of TiO2 and SiGe films, using direct-current magnetron sputtering technique. A wide range spectral response with a response-threshold up to similar to 1300 nm was obtained, accompanied with an increase in photo- response of more than two-orders of magnitude. Scanning electron microscopy, transmission electron microscopy, energy- dispersive x-ray spectroscopy and grazing incidence x- ray diffraction were used to analyze the morphological changes in respective structures. Photoconductive properties were studied by measuring photocurrent spectra using applied dc- voltages at various temperatures.						
25.	· ·	<i>NANOMATERI</i> <i>ALS,9,1187 (2019)</i>	Luminescent europium-doped hydroxylapatite (Eu(X)HAp) nanomaterials were successfully obtained by co-precipitation method at low temperature. The morphological, structural and optical properties were	and diagnosis " BIONA	E; Predoi , D; Neacs u, IA;	4.034	0.704	10.3390/ nano909 1187	Q1

	Behavi		investigated by	[PN-	AM;				
	our		scanning electron	IIIP1-	Trusc				
			microscopy (SEM),	1.2-	a, R;				
			transmission electron	PCCD-	Oprea,				
			microscopy (TEM),	I2017-	0;				
			X-ray diffraction	0629];	Tanas				
			(XRD), Fourier	EUEurop	1				
			Transform Infrared	ean	Vasile				
			(FT-IR), UV-Vis and	Union	, OR;				
			photoluminescence	(EU)	Nicoa				
			(PL) spectroscopy.	[638/12.0	ra, AI;				
			The cytotoxicity and	3.2014,	Surdu,				
			biocompatibility of	1970,	AV;				
			Eu(X)HAp were also	· ·	Iordac				
			evaluated using MTT	د _ا	he, F;				
			(3-(4,5-		Birca,				
			dimethylthiazol-2-		AC;				
			yl)-2,5-		Iconar				
			diphenyltetrazolium		u, SL;				
			bromide)) assay,		Vasile				
			oxidative stress		, BS				
			assessment and		,				
			fluorescent						
			microscopy. The						
			results reveal that the						
			Eu3+ has						
			successfully doped						
			the hexagonal lattice						
			of hydroxylapatite.						
			By enhancing the						
			optical features,						
			these Eu(X)HAp						
			materials						
			demonstrated						
			superior efficiency to						
			become fluorescent						
			labelling materials						
			for bioimaging						
			applications.						
	C (1			D	D 1 .				
	Synthes		Obtaining nanoscale	Romania					
	is,		materials has	n M ^r	, D;			10.2200/	
		NANOMATERI		-	Iconar	4.024	0 704	10.3390/	
		ALS,9,1295	miniaturization of	of	u, SL;		0.704	nano909	Q1
		(2019)	components, which	Research				1295	
	Antimic		has led to the	and	, MV;				
	robial		possibility of	Innovatio	Stan,				

Activity	achieving more	n	GE;		
of	efficient devices with	(PCCDI-	Buton,		
Magnes	faster functions and	UEFISC	N		
ium-	much lower costs.	DI) [PN-			
Doped	While	III-P1-			
Hydrox	hydroxyapatite	1.2-			
yapatite	[HAp, Ca-	PCCDI-			
Suspens	10(PO4)(6)(OH)(2)]	2017-			
ions	is considered the	0062, 58,			
	most widely used	2]			
	material for medical				
	applications in				
	orthopedics,				
	dentistry, and				
	general surgery, the				
	magnesium (Mg) is viewed as a				
	promising				
	biodegradable and				
	biocompatible				
	implant material.				
	Furthermore, Mg is				
	regarded as a strong				
	candidate for				
	developing medical				
	implants due to its				
	biocompatibility and				
	antimicrobial				
	properties against				
	gram-positive and				
	gram-negative				
	bacteria. For this				
	study, magnesium-				
	doped				
	hydroxyapatite				
	(Ca10-xMgx				
	(PO4)(6) (OH)(2),				
	x(Mg) = 0.1),				
	10MgHAp,				
	suspensions were				
	successfully obtained				
	by an adapted and				
	simple chemical co-				
	precipitation method.				
	The information				
	regarding the				

I I	1	1 1	1 1 1
	stability of the		
	nanosized 10MgHAp		
	particles suspension		
	obtained by zeta-		
	potential analysis		
	were confirmed for		
	the first time by a		
	non-destructive		
	ultrasound-based		
	technique. Structural		
	and morphological		
	studies of		
	synthesized		
	10MgHAp were		
	conducted by X-ray		
	diffraction (XRD), Fourier-transform		
	infrared (FTIR)		
	spectroscopy in		
	attenuated total		
	reflectance (ATR)		
	mode and scanning		
	electron microscopy		
	(SEM). The XRD		
	analysis of the		
	10MgHAp samples		
	confirmed that a		
	single crystalline		
	phase associated to		
	HAp with an average		
	grain size about 93.3		
	nm was obtained.		
	The FTIR-ATR		
	spectra revealed that		
	the 10MgHAp		
	sample presented		
	broader IR bands		
	with less visible		
	peaks when		
	compared to a well-		
	crystallized pure		
	HAp. The SEM		
	results evidenced		
	uniform MgHAp		
	nanoparticles with		
	spherical shape. The		
	spheriour shupe. The		

	Conduc		of the 10MgHAp suspension against gram-positive strains (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212), gram- negative strains (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853), as well as a fungal strain (Candida albicans ATCC 90029) were evaluated. Semiconducting metal oxide (SMOX)-based gas	Romania n National					
27.	tance Model for Single- Crystall ine/Co mpact Metal Oxide Gas- Sensing Layers in the Nondeg enerate Limit: Exampl e of Epitaxi al SnO2(1 01)	ACS SENSORS, 4 , pp.2420-2428 (2019)	sensors are indispensable for safety and health applications, for example, explosive, toxic gas alarms, controls for intake into car cabins, and monitor for industrial processes. In the past, the sensor community has been studying polycrystalline materials as sensors where the porous and random microstructure of the SMOX does not allow a separation of the phenomena involved in the sensing process. This led to conduction	P1-1.1- MC- 2017- 1917/201 7]; Alexande r von Humbold t Foundati onAlexa nder von Humbold	Simio n, CE; Schip ani, F; Papad ogian ni, A; Stanoi u, A; Budde , M; Oprea, A; Weim ar, U; Bierw agen, O; Barsa n, N	6.944	1.462	10.1021/ acssensor s.9b0101 8	Q1

models that can	on;	
model and predict	Leibniz	
the behavior of the	associati	
overall response, but	t on l l l l l	
they were not		
capable of giving		
fundamental		
information		
regarding the basic		
mechanisms taking		
place. The study of		
epitaxial layers is a		
definite		
improvement,		
allowing clarifying		
the different aspects		
and contributions of		
the sensing		
mechanisms. A		
detailed analytical		
model of the		
transduction function	n	
for n- and p-type		
single-		
crystalline/compact		
metal oxide gas		
sensors was		
developed that		
directly relates the		
conductance of the		
sample with changes	S	
in the surface		
electrostatic		
potential. Combined		
dc resistance and		
work function		
measurements were		
used in a compact		
SnO2(101) layer in		
operando conditions		
that allowed us to		
check the validity of		
our model in the		
region where		
Boltzmann		
approximation holds		

		to determine the surface and bulk properties of the material.						
*	JV on io pde pHYSICS,14,1 tio 02443 (2019) ew enc blu	In this work, we report a photodegradation process of azathioprine (AZA) highlighted by correlated studies of photoluminescence (PL) and the UV- VIS and IR absorption spectroscopy. The photodegradation process of AZA is observed by the gradual increasing in the intensity of the PL spectrum recorded under the excitation wavelength of 300 nm. This behaviour is accompanied, in the photoluminescence excitation (PLE) spectra, by a gradual intensity decreasing of the PLE band situated in the 250- 320 nm spectral range simultaneous with the intensity increasing of the PLE band localized in the 325-425 nm spectral range. Regardless if the immunosuppressive compound is in the state of powder, tablet or solution, the	- chemical	hvalo v, D; Gherc a, D; Baibar ac, M	3.042	0.368	10.1016/j .rinp.201 9.102443	I I

			PL and UV-VIS absorption spectroscopy studies have demonstrated that a photodegradation process under UV light takes place. According to the PL studies carried out in ambient and vacuum condition, the photodegradation process of AZA was demonstrated to be influenced by the oxygen from air. The presence of a new IR band with maximum at 1745 cm(-1) confirms the AZA photodegradation pathway proposed in	4529/29. 11.2017]					
29.	Cavity- Photon- Induced High- Order Transiti ons betwee n Ground States of Quantu m Dots	<i>ANNALEN DER PHYSIK,531,1 900306 (2019)</i>	this work. It is shown that quantum electromagnetic transitions to high orders are essential to describe the time- dependent path of a nanoscale electron system in a Coulomb blockade regime when coupled to external leads and placed in a 3D rectangular photon cavity. The electronic system consists of two quantum dots embedded asymmetrically in a short quantum wire. The two lowest in	Universit y of Iceland; Icelandic Research Fund [163082- 051]; Icelandic Instrume nts Fund; CNCS - UE- FISCDI grant [PN-III- PCE- 2016- 0084]; Romania n Core	undss on, V; Abdul lah, NR;	3.276	1.151	10.1002/ andp.201 900306	Q1

			·	D					
			energy spin	Program					
			degenerate electron	[PN19-					
			states are mostly	03, 21					
			localized in each dot	N/08.02.					
			with only a tiny	2019]					
			probability in the						
			other dot. In the						
			presence of the leads,						
			a slow high-order						
			transition between						
			the ground states of						
			the two quantum						
			dots is identified.						
			The Fourier power						
			spectrum for photon-						
			photon correlations						
			-						
			in the steady state						
			shows a Fano type of						
			resonance for the						
			frequency of the						
			slow transition. Full						
			account is taken of						
			the geometry of the						
			multilevel electronic						
			system, and the						
			electron-electron						
			Coulomb						
			interactions together						
			with the para- and						
			diamagnetic						
			electron-photon						
			interactions are						
			treated with step-						
			wise exact numerical						
			diagonalization and						
			truncation of						
			appropriate many-						
			body Fock spaces.						
			The matrix elements						
			for all interactions						
			are computed						
			analytically or						
			numerically exactly.						
	Formati	CERAMICS	Formation	National	Kryzh			10 1016/	
30.	on	INTERNATIO	peculiarities of	Academy		3.45	0.454	10.1016/j	Q1
	peculiar	NAL, 45 ,	highly-doped	of	ka,			.ceramint	
	1	, ,			· ·				

ities	pp.16002-	(Y(0.86)La(0.09)Vb(Sciences	OS;	.2019.05.	
and	16007 (2019)	0.05))(2)O-3	of	Baum	111	
optica		transparent ceramics	-	er,		
prope		have been studied by		· · ·		
es of		X-ray diffraction and				
highl	V-	electron microscopy	; Chinese			
doped		methods. The phase	Academy			
(Y(0.		composition	of	SV;		
)La(0		evolution of	-	Doros		
9)Vb		1.81Y(2)O(3).0.18La		henko,		
05))(2	·	(2)O(3)0.01Yb(2)O(í í		
0-3		3) powder mixtures	of	Yavet		
transp	bar	annealed at the		skiy,		
ent		temperatures of	~	RP;		
ceran	nic	1100, 1200, 1300,		Balab		
S		and 1400 degrees C		anov,		
		has been studied by		AE;		
		XRD. It has been		Tolma		
		shown that Yb2O3		chev,		
		phase dissolves in		AV;		
		Y2O3 matrix in the		Skorik		
		calcination		, SN;		
		temperature range of		Li, J;		
		1300-1400 degrees		Kuncs		
		C. Complete		er, A		
		dissolution of La2O3				
		in Y2O3 matrix				
		occurs at				
		temperatures above				
		1400 degrees C.				
		La3+ ions enter in				
		Y2O3 and Yb2O3				
		crystal structures				
		simultaneously in the				
		1200-1300 degrees C				
		range, which leads to				
		a remarkable				
		increase in the				
		volume of the				
		corresponding				
		crystal lattices. The				
		possible reasons for				
		suppressing the				
		crystalline growth of				
		Y2O3 and Yb2O3				
		cubic phases have				

			been discussed. Finally, (Y(0.86)La(0.09)Vb(0.05))(2)O-3 transparent ceramics have been obtained by solid-state vacuum sintering at 1650-1750 degrees C. Ceramics synthesized at a temperature of 1750 degrees C have been characterized by an in-line optical transmittance of 60% and a homogeneous distribution of constituent						
			components within the volume and along the grain boundaries.						
31.	Nanocl ustered Pd decorat ed nanocry stalline Zn doped SnO2 for ppb NO2 detectio n at low tempera ture	AND ACTUATORS B- CHEMICAL, 2 94 , pp.148-156 (2019)	Nanoclustered Pd (2 mol%) was used to decorate Zn doped SnO2 (10 mol% Zn) in order to increase its sensing performances. Zn doped SnO2 built from nanoparticles was prepared by a hydrothermal method using a nonionic surfactant - Brij52 and Tripropylamine (TPA) as co- templates. The presence of well- dispersed Zn2+ ions in the SnO2 matrix leads to a nonstoichiometric surface. Pd was	CNCS- UEFISC DI [PN- III-P4- ID-PCE- 2016- 0529]; Romania n National Authorit y for Scientific Research through the Core Programs [PN18- 110101, PN19-03, 21N/08.0 2.2019]	Soma cescu, S; Ghica, C; Simio n, CE; Kuncs er, AC; Vlaicu , AM; Stefan , M; Ghica, D; Florea , OG; Merci oniu, IF; Stanoi u, A	6.393	0.824	10.1016/j .snb.201 9.05.033	Q1

	deposited by		
	subsequent we	t	
	impregnation u	sing	
	hydrazine as		
	reducing agent	. The	
	as obtained po		
	were deposited		
	thick layers on		
	commercial		
	substrates, in o	rder to	
	obtain the sens		
	structures. The		
	coexistence of		
	mixture of vale		
	states (Pd-0, Pd		
	and Pd4+) was		
	highlighted on		
	surface of the a		
	prepared layers		
	Several aspects		
	been followed		
		'n and	
	regarding the Z		
	Pd dispersion i the SnO2 matr		
	large scale and		
	scale morpholo	pgy	
	(SEM and	、 .	
	TEM/HRTEM		
	relation with th		
	synthesis route	, the	
	obtained		
	crystallographi	c l	
	phases (XRD,		
	SAED) and the		
	in which the Z		
	ions are inserte		
	the SnO2 struc		
	(XRD, XPS, E	PR),	
	the spatial		
	distribution of	the	
	added chemica	1	
	elements, Zn a	nd Pd	
	(SEM, STEM,	EDS).	
	All these		
	morphological	and	
	structural aspec		
L [,	

			well as the Pd surface chemistry, have been correlated with the sensing properties of the nanostructured materials under controlled gas atmosphere. Through this study, we could harvest the specific role of the aforementioned loadings towards selective detection of low NO2 concentrations, between 350 ppb to 5 ppm, at low operating temperature of 100						
			degrees C, for infield conditions. Spectroscopic	Romania					
32.	Spectro scopic investig ations of Pr3+ ions doped CNGG and CLNG G single crystals	<i>JOURNAL OF</i> <i>ALLOYS AND</i> <i>COMPOUNDS</i> , 799 , pp.288- 301 (2019)	characteristics of Pr3+ ions doped CNGG and CLNGG single crystals were investigated in order to assess their potential as laser materials for visible emission. The Judd- Ofelt intensity parameters for the f-f transitions of Pr3+ ions were used to determine spectroscopic and laser emission features. The temperature dependence of the absorption spectra for the H-3(4) -> P- 3(0) transition was	n National Authorit y for Scientific Research and Innovatio n, CNCS- UEFISC DI [PN- III-P4- ID-PCE- 2016- 0853, 119/2017]; Romania n National Authorit	C; Gheor	4.175	0.601	10.1016/j .jallcom. 2019.05. 154	Q1

· · · · · · · · · · · · · · · · · · ·		I I	 I	
	used to highlight the	y for		
	multicenter structure,	Scientific		
	different Stark	Research		
	levels, hot bands,	and		
	and also the	Innovatio		
	connection between	n through		
	the vibronic and	the		
	electronic lines. The	program		
	presence of electron-			
	phonon interaction	U		
	was also observed in	LAPLAS		
	the emission spectra	VI		
	corresponding to the	[16N/08.		
	$P-3(0) \rightarrow H-3(4)$	02.2019];		
	transition under	Romania		
	different excitation	n		
	wavelengths. Based	National		
	on low temperature	Authorit		
	absorption and	y for		
	emission spectra,	Scientific		
	partial energy level	Research		
	diagrams of Pr3+	and		
	ions doped in CNGG			
	and CLNGG single	n through		
	crystals were	the		
	obtained. The	program		
	emission cross-	NUCLE		
	sections for different			
	transitions of Pr3+	[21N/201		
	ions were evaluated	9]		
	by the Fuchtbauer-	[~]		
	Ladenburg formula.			
	The fluorescence			
	decay curve of the			
	D-1(2) level was			
	measured under			
	selective excitation			
	at different			
	concentrations and			
	temperatures. The concentration			
	quenching process for the $D_1(2)$ state			
	for the D-1(2) state was also studied (C)			
	was also studied. (C)			
	2019 Elsevier B.V.			
	All rights reserved.			

33.	g in	PHYSICAL REVIEW APPLIED, 12 ,0 24053 (2019)	Multiple nonvolatile and well-separated capacitive states can be obtained in a two- terminal ferroelectric capacitor setup by fine tuning the polarization switching process. This approach allows for the implementation of memcomputing (same platform for storage and computing) capable ferroelectric structures. Digital and analog storage modes are exemplified in this work together with an algorithm for simple binary computation functions such as OR/NOR and AND/NAND for data processing on the same device. Results are obtained by controlling the polarization switching process in ferroelectric multi- layers such as Pb (Zr0.2Ti0.8)O- 3/SrTiO3/Pb (Zr0.2Ti0.8)O- 3/BaTiO3/Pb (Zr0.2Ti0.8)O- 3. Besides memcomputing, these results can be used for	Ministry of Research and Innovatio n through the Core	GA; Filip, LD; Chiril a, C; Iuga, A; Pasuk, I; Hrib, L; Trupi na, L; Pintili e, I; Pintili	4.532	1.832	10.1103/ PhysRev Applied. 12.02405 3	Q1
-----	------	---	--	---	---	-------	-------	--	----

		nondestructive capacitive reading of information in simple ferroelectric capacitors or can open the way toward applications such as neuromorphic and chaotic circuits.						
es fo 34. imme	ostr red adiu ed el rrod obi <i>ELECTROCHI</i> <i>MICA</i> <i>ACTA</i> , 315 , pp.102-113 (2019) ase ase agh el opar s	The present investigation deals with the development, characterization and application of nano- structured Pd doped Ni electrodes (Pd@Ni), which uses the electrochemical properties of Pd in synergy with the magnetic properties of Ni for biosensors development. The Pd@Ni electrodes have been characterized by X- ray diffraction, scanning electron microscopy with energy dispersive X- ray spectroscopy and X-ray photoelectron spectroscopy. It has been shown that palladium presented spherical assemblies ranging 150-200 nm medium diameter size that covers large areas of the electrode surface while metallic nickel, which confers magnetic properties, showed a uniform	Ministry of Research and Innovatio n through Operatio nal Program me Competit iveness [NANO BIOSUR F-SMIS	E; Encul escu, M; Costes cu, R; Preda, N; Enach e, TA; Encul escu, I;	5.383	0.81	10.1016/j .electacta .2019.04. 143	Q1

granular structure		1		
with sizes between				
20 and 50 nm. Cyclic				
voltammetry and				
electrochemical				
impedance				
spectroscopy were				
performed to				
understand the				
electrochemical				
process at the				
Pd@Ni electrodes in				
neutral media. The				
Pd@Ni electrodes				
were applied for the				
electrochemical				
detection of H2O2.				
Finally, Ni				
nanoparticles (NiNP)				
functionalized with				
the model enzyme				
glucose oxidase				
(GOx-NiNP) have				
been attached to the				
Pd@Ni electrode				
solely through				
magnetic				
interactions, and the				
obtained GOx-				
NiNP/Pd@Ni				
biosensor applied for				
glucose				
determination in				
aqueous solutions by				
fixed potential				
amperometry at -				
0.05 V (vs Ag/AgCl)				
with reduced				
interferences. (C)				
2019 Elsevier Ltd.				
All rights reserved.				
Adsorpt Adsorption processes National Baib	ar		10.1038/	
ion of <i>SCIENTIFIC</i> of 1,4-phenylene Institute of N	л.		s41598-	
55. 1,4- <i>KEFOR15</i> ,9,11 disounocyanate of Daes		1.286	019-	Q1
pnenyle 968 (2019) (PDITC) on two new Materials , M			48314-x	
ne platforms of the type Physics ^{u, 14}	• 1	1	TOJITA	1

1	1 11 (00)	150/05 00	D •		
diisothi	graphene oxide (GO)				
ocyanat	sheets and GO layers	.2016,	SN		
e onto	functionalization	2570/29.			
the	with	11.2017];			
graphen	polydiphenylamine	National			
e oxide	(PDPA) are studied	Authorit			
sheets	by Raman scattering	y for			
functio	and	Scientific			
nalized	photoluminescence	Research			
with	(PL). An interaction	and			
polydip	in solid state phase	Innovatio			
henyla	of the two	n			
mine in	constituents, i.e.	[58/05.09			
doped	PDITC and GO	.2016];			
state	sheets, and a	Pro-			
	deposition of PDITC	Vitam			
	onto the PDPA	Ltd.			
	functionalized GO	[2570/29.			
	layers, respectively,	11.2017]			
	by the drop casting	-			
	method, were				
	performed. In the				
	first case, it is shown				
	that interaction in				
	solid state phase of				
	GO with PDITC				
	leads to an				
	intercalation of the				
	organic compound				
	between GO sheets				
	simultaneously with				
	the appearance of the				
	o-thiocarbamate				
	groups, that induces:				
	(i) an enhancement				
	of the PDITC Raman				
	lines situated in the				
	400-800 and 1000-				
	1300 cm(-1) spectral				
	ranges, (ii) a change				
	in the ratio between				
	the relative				
	intensities of the two				
	Raman lines peaked				
	at 1585 and 1602				
	cm(-1) accompanied				

	1	1	1	1	1	1	1	1	1
			by an up-shift in the						
			case of the second						
			line and (iii) a down-						
			shift of the PDTIC						
			PL band from 502 to						
			491 nm. Using cyclic						
			voltammetry, an						
			electrochemical						
			functionalization of						
			the GO layers with						
			PDPA doped with						
			H3PMo12O40						
			heteropolyanions						
			takes place, as						
			demonstrated by						
			Raman scattering						
			and FTIR						
			spectroscopy. The						
			presence of the						
			amine groups in the						
			molecular structure						
			of the doped PDPA						
			functionalized GO						
			layers induces a						
			chemical adsorption						
			of PDITC on this						
			platform, when the						
			thiourea groups						
			appear						
			simultaneously with						
			o-thiocarbamate						
			groups. A chemical						
			mechanism is						
			proposed to take						
			place at the interface						
			of the GO sheets and						
			the doped PDPA						
			functionalized GO						
			layers, respectively,						
			with PDITC.						
	Mineral	ANGEWANDT	Metal-organic	European	Terzo				
	ization-		frameworks (MOFs)	Research	poulo			10 1002/	
26	Inspired	E CHEMIE-	capable of mobility	Council	u, A;	10.057	2 2 4 2	10.1002/	
36.	Synthes	INTERNATIO	and manipulation are		Hoop,	12.257	3.243	anie.201	Q1
	is of	NAL	attractive materials	Grant	M;			907389	
	Magnet	EDITION, 58 ,	for potential	ELECTR					
	magnet				chen,				

ic	pp.13550-	applications in	OCHEM	XZ;		
	13555 (2019)		BOTS	1 · · · · · · · · · · · · · · · · · · ·		
	15555 (2019)	targeted drug		Hirt,		
Imidazo		delivery, catalysis,	(ERC-	AM;		
le		and small-scale	2013-	Charil		
Framew		machines. One way	STG)	aou,		
ork		of rendering MOFs	[336456]	M;		
Compo		navigable is	;	Shen,		
sites		incorporating	microCry			
		magnetically	sFact	Musht		
		responsive	(ERC-	aq, F;		
		nanostructures,	2015-	del		
		which usually	STG)	Pino,		
		involve at least two	[677020]	AP;		
		preparation steps: the	; ETH	Logof		
		growth of the	Grant	atu, C;		
		magnetic	Mofbots	Simon		
		nanomaterial and its	[ETH-33	elli, L;		
		incorporation during	17-1];	de		
		the synthesis of the	Swiss	Mello,		
		MOF crystals. Now,	National	AJ;		
		by using optimal	Science	Doona		
		combinations of salts		n, CJ;		
		and ligands, zeolitic	onSwiss	Sort,		
		imidazolate	National	J;		
		framework	Science	Nelso		
		composite structures		n, BJ;		
		with ferrimagnetic	on	Pane,		
		behavior can be	(SNSF)	S;		
		readily obtained via		Puigm		
		a one-step synthetic	181988];	arti-		
		procedure, that is,	ETH	Luis, J		
		without the	Career	Luis, J		
		incorporation of	Seed			
		extrinsic magnetic	Grant			
		components. The	SEED-			
			-			
		ferrimagnetism of	14 16-1];			
		the composite	Generalit			
		originates from	at de			
		binary oxides of iron				
		and transition metals	aGeneral			
		such as cobalt. This	itat de			
		approach exhibits	Cataluny			
		similarities to the	a [2017-			
		natural	SGR-			
		mineralization of	292];			
		iron oxide species, as	Spanish			

		is observed in ores and in biomineralization.	Governm entSpani				
			sh Governm ent [MAT20 17- 86357- C3-1-R]				
Nitrogen-doped graphen e as metal free 37. basic catalyst for couplin g reaction s	d JOURNAL OF CATALYSIS, 37 6 , pp.238-247 (2019)	N-doped defective graphene [(N)G] obtained by pyrolysis at 900 degrees C of chitosan contains about 3.7% of residual N atoms, distributed as pyridinic, pyrrolic and graphitic N atoms. It has been found that (N)G acts as basic catalyst promoting two classical C-C bond forming nucleophilic additions in organic chemistry, such as the Michael and the Henry additions. Computational calculations at DFT level of models corresponding to the various N atoms leads to the conclusion that N atoms are more stable at the periphery of the graphene sheets and that H adsorption on these sites is a suitable descriptor to correlate with the catalytic activity of the various sites.	UEFISC DI [PN- III-P4- ID-PCE- 2016- 0146, 121/2017 , PN-III- P1-1.1- TE- 2016- 2191, 89/2018] ; Spanish Ministry	n, A; Cojoc aru, B; Coma n, SM; Bucur, C; Primo, A; Garcia , H; Parvul	1.561	10.1016/j .jcat.201 9.07.011	Q1

			According to these	Innovatio					
			calculations the most						
			active sites are	11					
			pyridinic N atoms at						
			- •						
			zig-zag edges of the						
			sheets. In addition, N						
			as dopant changes						
			the reactivity of the						
			neigh. bour C atoms.						
			Water was found a						
			suitable solvent to						
			achieve high						
			conversions in both						
			reactions. In this						
			solvent the initial						
			distribution of N						
			atoms is affected due						
			to the easy						
			protonation of the N-						
			py to N-pyH sites.						
			As an effect, C edge						
			sites adjacent at N-						
			PyH with an						
			appropriate reactivity						
			towards the alpha-C-						
			H bond breaking are						
			formed. The present						
			results show the						
			general activity of N-						
			doped graphene as						
			base catalysts and						
			illustrate the						
			potential of						
			carbocatalysis to						
			promote reactions of						
			general interest in						
			0						
			organic synthesis.						
			(C) 2019 Elsevier						
			Inc. All rights						
			reserved.						
	Dramati		The crystallization of	European	Bouaz				
	c	APL	ferroelectric	UnionEu	iz, J;			10.1063/	
20	impact		(Hf,Zr)O-2 thin films	ropean	Rome	1 206	1 400		
38.	of	<i>MATERIALS</i> , 7 ,	is achieved by	Union	o, PR;	4.296	1.409	1.511089	וע
	pressur	081109 (2019)	playing on the	(EU)	Babou			4	
	e and		deposition pressure	[780302]	x, N;				
<u>.</u>		1	r	r	,,				

anneali	during reactive	; GDR	Negre		
ng	magnetron sputtering	OxyFun	a, R;		
tempera	from a Hf/Zr		Pintili		
ture on	metallic target.		e, L;		
the	Postdeposition		Vilqui		
properti	annealing was tried		n, B		
es of	at different				
sputtere	temperatures in order				
d	to optimize the				
ferroele	quality of the				
ctric	samples. Structural				
HZO	characterizations are				
layers	performed by				
	transmission electron				
	microscopy (TEM)				
	and electrical				
	characterizations are				
	carried out. TEM				
	analyses reveal that				
	the samples				
	deposited at a low				
	working pressure				
	show no				
	orthorhombic phase,				
	and thus are not				
	ferroelectric,				
	whereas the samples				
	deposited at higher				
	working pressure				
	show the				
	orthorhombic				
	ferroelectric phase.				
	The maximum				
	remnant polarization				
	is 6 mu C/cm(2) and				
	is obtained for the				
	sample annealed at				
	600 degrees C. The				
	maximum cycles to breakdown is higher				
	than $2 \ge 10(10)$				
	cycles and is reached				
	for the sample				
	annealed at 400				
	degrees C. These				
	results are discussed				

		in the matter of phase transition and oxygen vacancies redistribution. (c) 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecomm ons.org/licenses/by/4 .0/). Electrodes	Spanish					
39. through reactive	<i>APPLIED</i> <i>SURFACE</i> <i>SCIENCE</i> , 484 , pp.245-256 (2019)	constituted by nitrogen-doped reduced graphene oxide (NrGO) in combination with NiO nanostructures were fabricated by means of reactive inverse matrix assisted pulsed laser evaporation technique. The structure- composition of the electrode composites was tailored by laser- inducing chemical reactions of graphene oxide (GO) flakes with different precursor molecules (citric acid, ascorbic acid and imidazole) during GO deposition. Structural characterizations reveal the formation of wrinkles and nanoholes in the NrGO sheets,	Ministry of Economy , Industry and Competit iveness [ENE201 7-89210- C2-1-R]; AGAUR of Generalit at de Cataluny aAgencia de Gestio D'Ajuts Universit aris de Recerca Agaur (AGAU R) [2017	del Pino, AP; Rama dan, MA; Lebier e, PG; Ivan, R; Logof atu, C; Youse f, I; Gyorg y, E	5.155	0.671	10.1016/j .apsusc.2 019.04.1 27	Q1

			besides their coating	and					
			with NiO	Competit					
			nanostructures.	iveness,					
			Compositional	through					
			studies disclose that	the					
			imidazole precursor	"Severo					
			promotes the	Ochoa"					
			synthesis of NrGO	Program					
			with the largest	me for					
			degree of reduction	Centres					
			and nitrogen doping	of					
			(mainly with	Excellen					
			graphitic and	ce in RD					
			pyridinic N).	[SEV-					
			Electrochemical	2015-					
			analyses of the	0496]					
			obtained electrodes	0120]					
			reveal that NiO						
			nanostructures						
			increase surface						
			charge storage						
			processes (double						
			· ·						
			layer -						
			pseudocapacitive)						
			over diffusive ones,						
			being the imidazole-						
			based electrodes the						
			ones exhibiting the						
			best performance (up						
			to 114 F cm(-3) at 10						
			mV s(-1)).						
			Symmetric and						
			asymmetric electro-						
			chemical capacitors						
			were also fabricated						
			showing excellent						
			robustness over						
			10,000 charge-						
			discharge cycles at						
			high specific						
			currents.						
	3D	MATERIALS	The paper describes	JINR -	Barbi				
	hybrid	SCIENCE &	an innovative bio-	Romania				10.1016/j	
40.	-	ENGINEERIN	design of some	(Universi		4 959	0.751	.msec.20	Q1
т 0.	es	G C-	hybrid	ty of	cu,	1.757	0.751	19.03.06	×1
	based	MATERIALS	nanoarchitectures	Buchares				9	
	Juaseu	MALS	nanoarchitectures	Buchales	р ин с,				

on	FOR	containing	t)	Badea		
-	BIOLOGICAL	bioartificial	[48/2018]			
	APPLICATIO	membranes and	322/21.0			
membra		silver nanoparticles	5.2018,	um,		
		phytogenerated by	04-4-	M;		
	pp.120-137		1121-			
Caryop	(2019)	using a natural		Ungur		
hyllus		extract Caryophyllus	2015/202	eanu,		
aromati			0,4726-	C;		
cus -		that contains many	4-18/2];	Suica-		
"green"		bioactive	Romania	-		
synthesi		compounds. Two	n N	ez, IR;		
zed		kinds of liposomes		Lorda		
nano-		with and without	Authorit	che,		
silver		chlorophyll a (Chla)	y for	SM;		
with		obtained through thin				
improv		film hydration	Research	1 '		
ed		method were used to	· ·	Zgura,		
bioperf		achieve bio-green-		I;		
ormanc		generated hybrids by		Maral		
es		a simple, cost	16 42 02	oiu,		
		effective bottom-up	03];	VA		
		approach. The	Romania			
		characteristic peaks	n			
		of CE-nAg	Ministry			
		monitored by UV-	of			
		Vis absorption have	Research			
		firstly demonstrated	and			
		the biohybrids	Innovatio			
		formation. The	n through			
		slightly blue shift	the			
		and fluorescence	NIMP			
		quenching observed	Core			
		by fluorescence	Program			
		emission spectra	[21N/201			
		highlighted the	9]			
		formation of hybrid	1			
		systems by				
		biointeraction				
		between lipid				
		vesicles and silver				
		nanoparticles. The				
		incorporation of				
		silver nanoparticles				
		in lipid vesicles				
		resulted in				
		significant changes				

of FT-IR spectra of
liposomes, indicating
a reorganization of
biomimetic
membranes. All the
microscopic methods
(SEM, AFM and
TEM) confirmed the
biosynthesis of
"green" AgNPs
together with
associated
biohybrids, their
spherical and quasi-
spherical shapes with
nano-scaled size. By
TEM assay it was
shown that CE-nAg
are surrounded by
petal like cloud
structures that
consist of
biopolymers like
proteins or
polysaccharides and
other phytochemicals
arising from clove extract. EDS spectra
· · · · · · · · · · · · · · · · · · ·
confirmed the
formation of phyto-
nanoAg and also the
presence of silver in
the biohybrids. In
addition, Selected
Area Electron
Diffraction showed
characteristic
polycrystalline ring
patterns for a cubic
structure of the
clove-generated
AgNPs. The hybrid
materials showed
efficient physical
stability, ie. xi value
of - 28.0 mV (for

biohybrids without
Chla, BH) and of -
31.7 mV (for
biohybrids labelled
with Chla, Chla-BH),
assured by strong
electrostatic
repulsive forces
between particles.
The "green" nano-
silver particles (CE-
nAg) showed
remarkable
antioxidant activity
(AA = 90.2%). The
biohybrids loaded
with clove-AgNPs
proved to be more
effective, scavenging
about 98.8% of free
radicals (in case of
ChlaBH), and of
92.6% (in case of
BH). The
antibacterial
effectiveness showed
that green AgNPs
combine in a
synergistic manner
the antibacterial
properties of clove
extract with those of
silver, resulting in an
enhancement of
inhibition diameter,
by 20%. Chla-BH
proved to be more
potent against
Escherichia coli,
than BH, exhibiting
an inhibition
diameter of 42 mm.
Regarding the in
vitro cytotoxicity
against tumour cells,
the CE-nAg

concentration	
significantly	
influenced the cell	
viability, ie. IC50	
was 3.6% (v/v) for	
HT-29 cells. Chla-	
BH was more	
effective against HT-	
29 cancer cells at the	
concentrations	
ranging from 0 to	
18% (v/v) , when the	
normal cells were	
not affected. Clove-	
generated AgNPs	
exhibited haemolytic	
activity against	
hRBCs, while the	
biohybrids were	
haemocompatible.	
The action	
mechanism on the	
two cell lines (mouse	
fibroblast L929 cells	
and human colorectal	
adenocarcinoma HT-	
29 cells) investigated	
by fluorescence	
microscopy	
demonstrated that	
CE-nAg killed	
almost all the cells	
(94%) through	
necrosis at a	
concentration of	
33.4% (v/v). The	
treatment of HT-29	
cells with BH	
resulted in: 71.5%	
viable cells, 19.5%	
apoptotic and only	
9% necrotic cells,	
while in the case of	
Chla-BH treatment,	
only 77.5% cells	
were viable, 16%	

		cells were apoptotic and 6.5% were necrotic. In this way, the developed silver- based nanoparticles can represent viable promoters to develop new biohybrids with improved features, e.g. antioxidant and antibacterial effectiveness, haemolytic activity and greater specificity towards tumour cells.					
 Physica properti es of the ferroele ctric capacit ors based on Al- doped HfO2 grown via Atomic Layer Deposit ion on Si 	<i>APPLIED</i> <i>SURFACE</i> <i>SCIENCE</i> , 483 , pp.324-333 (2019)	Ferroelectric capacitors based on aluminium (Al) doped hafnium oxide (HfO2) thin films grown on silicon substrates were fabricated by Atomic Layer Deposition (ALD), taking into account two methods. The first one involved the growth of a binary oxide, in a laminar way, by alternating the ALD cycles of HfO2 and Al2O3, and the second, the two precursors were sequentially mixed on the surface. The composition and structure of deposited aluminium doped hafnium oxide (Al: HfO2) thin films have been studied using X-ray photoelectron	Ministry of Research and Innovatio n, CNCSd- UEFISC DI [PN- III-P4- ID- PCCF- 2016- 0033, PN-III- P1-1.1- PD- 2016- 1322]	e, F;	0.671	10.1016/j .apsusc.2 019.03.1 66	Q1

		spectroscopy (XPS)				
		and grazing				
		incidence X-ray				
		diffraction (GIXRD).				
		XPS measurements				
		show the formation				
		of opposite				
		ferroelectric				
		polarization areas.				
		Via GIXRD, it was				
		found that the Al:				
		HfO2 films				
		deposited on Si have				
		a structure with				
		polycrystalline				
		domains. Recording				
		and investigation of				
		ferroelectric domains				
		were performed by				
		Piezoresponse Force				
		Microscopy (PFM),				
		while the electrical				
		performances of				
		obtained devices				
		were analysed by				
		capacitance-voltage				
		(C-V) and current-				
		voltage (I-V)				
		characteristics. The				
		PFM measurements				
		show there is a				
		mechanical non-zero				
		response even				
		outside the written				
		area and for an				
		appropriate value of				
		the electrical stress				
		the difference in				
		phase between				
		successive areas is				
		saturated to a value				
		close to 180 degrees.				
		The atomic force				
		microscopy (AFM)				
		analyses indicate a				
		very low value of				
I	I	-		1		

			roughness average,						
			for all grown thin films, similar to 0.2						
			nm, for a thickness						
			of similar to 7 nm.						
			From C-V						
			characteristics, the						
			memory window was						
			extracted and the						
			calculated values						
			were found to be 0.8						
			V for the device						
			obtained by the first						
			ALD method, and						
			0.44 V for the						
			second one,						
			respectively.						
			Moreover, in the						
			case of the device						
			based on the						
			ferroelectric layer						
			grown by the second						
			ALD method, the memory window						
			extends over a much						
			wider applied						
			voltage domain, in						
			the range (+/- 4 V;						
			+/- 8 V), at a signal						
			of 100 kHz.						
			In this work we	M-					
			prepared films of	ERA.NE					
	Ge		amorphous	T	Stavar				
	nanopar		germanium	PhotoNa	ache,				
	ticles in		nanoparticles	noP	I;				
	SiO2		embedded in SiO2	[33/2016	Teodo				
	for near	SCIENTIFIC	deposited by]; PCE	rescu,			10.1038/	
42.	infrared	<i>REPORTS</i> , 9 ,10	magnetron sputtering	[122/201	VS;	4.011	1.286	s41598-	01
+ <i>L</i> .	photode		on Si and quartz	7]; TE	Prepel	+.011	1.200	019-	Q1
		heated substrates at	(PNCDI	ita, P;			46711-w		
	with		300, 400 and 500	III) -	Logof				
	high		degrees C. Structure,		atu, C;				
	perform		morphology, optical,	UEFISC	Ciurea				
	ance		electrical and	DI	, ML				
			photoconduction	[30/2018					
			properties of all];					

214			 	
films were	Romania			
U	n			
	Ministry			
depth of the films is	of			
strongly dependent	Research			
on the deposition	and			
temperature. In the	Innovatio			
films deposited at	n through			
300 degrees C, the	NIMP			
Ge content is	Core			
constant in the depth,	Program			
while films deposited				
at 500 degrees C	9]			
show a significant	-			
decrease of Ge				
content from				
interface of the film				
with substrate				
towards the film free				
surface. From the				
absorption curves we				
obtained the Ge band				
gap of 1.39 eV for				
300 degrees C				
deposited films and				
1.44 eV for the films				
deposited at 500				
degrees C. The				
photocurrents are				
1				
higher with more				
than one order of				
magnitude than the				
dark ones. The				
photocurrent spectra				
present different				
cutoff wavelengths				
depending on the				
deposition				
temperature, i.e.				
1325 nm for 300				
degrees C and 1267				
nm for 500 degrees				
C. These films				
present good				
responsivities of 2.42				
AW(-1) (52 mu W				

		incident power) at 300 degrees C and 0.69 AW(-1) (57 mW) at 500 degrees C and high internal quantum efficiency of similar to 445% for 300 degrees C and similar to 118% for 500 degrees C.						
43. and magneti	IOURNAL OF ALLOYS AND COMPOUNDS 792 , pp.432- 443 (2019)	ZnxCo1- xFe2O4/SiO2 (x = 0, 0.25, 0.50, 0.75, 1.00) nanocomposites (NCs) have been investigated through structural, morphological and magnetic measurements. X-ray diffraction and Mossbauer data indicated the presence of nanocrystalline mixed cubic spinel. The lattice parameters gradually decreased with increasing Zn content and follow Vegard's law. The crystallite size, X-ray density and porosity of ZnxCo1-xFe2O4 decreased with increasing Zn content. The ferrite nanoparticles spherical shape and size (32.0-6.5, 17.5- 8.1 and 36.2-18.6 nm for the NCs annealed at 500, 800 and 1100 degrees C,	[PN-III- P4-ID- PCE- 2016- 0534]; [PN-III- P4-ID- PCCF- 2016- 0112]; [19PFE/1 7.10.201 8]	Dippo ng, T; Deac, IG; Cadar, O; Levei, EA; Diama ndesc u, L; Borod i, G	4.175	0.601	10.1016/j .jallcom. 2019.04. 059	Q1

			respectively) was						
			established by						
			transmission electron						
			microscopy. The						
			Mossbauer spectra						
			showed the						
			characteristic						
			magnetic patterns of						
			Co and Zn spinels.						
			The shape of						
			hysteresis loops						
			revealed the						
			dependence of						
			superparamagnetic						
			behavior on the						
			structural properties.						
			The saturation						
			magnetization (M-s)						
			and coercive field						
			(H-c) were also						
			influenced by Co						
			substitution with Zn,						
			showing the decrease						
			of M-s and H-c. The						
			replacement of						
			magnetic Co2+ with						
			the zero magnetic						
			moment Zn2+						
			induces a gradual						
			reduction of						
			magnetocrystalline						
			anisotropy and						
			decrease of H-c. (C)						
			2019 Elsevier B.V.						
			All rights reserved.						
	Impact		The competition	Romania	Popes				
	on		between interface	n	cu,				
	-	PHYSICA	barrier in the	Ministry	DG;				
		STATUS	Schottky-Mott limit	of	Husan				
	and	SOLIDI-	and polarization	Research				10.1002/	
44.		RAPID	driven mechanism is	and	MA;	3.729	0.79	pssr.2019	Q1
		RESEARCH	established during	Innovatio				00077	
		<i>LETTERS</i> , 13 ,1		n through					
		900077 (2019)	metal (Au) -	the	Pintili				
	ly		ferroelectric	UEFISC	e, L;				
	Grown		(BaTiO3) interface.	DI	Teodo				
						1			

A	Au on	X-ray photoelectron	Agency	rescu,		
1 1	BaTiO3	spectroscopy	[PN-III-	CM		
		provides core level	P4-ID-			
		energies and valence				
		band positions in the	16-			
		contact region, to	0047];			
		monitor the band	Institute			
		alignment from the	of			
		very first stages of	Atomic			
		metal deposition on	Physics			
		BaTiO3. The band	[18-			
		bending at	ELI/2016			
		metal/ferroelectric]; [PN-II-			
		(FE) interface is	RU-TE-			
		extracted from the	2014-4-			
		shift of core levels	1117]			
		(Ba 3d, Ti 2p) as a				
		function of the metal				
		thickness. It is shown				
		that the interface				
		band alignment				
		mechanism involves				
		a well-defined				
		polarization				
		orientation washing				
		out the bending				
		expected from the				
		work function				
		difference. The				
		sudden modification				
		of the binding				
		energies within				
		ferroelectric at the				
		first 2 angstrom Au				
		indicates that the				
		ferroelectric				
		compensation				
		mechanism triggered				
		by the metal				
		overlayer initiates				
		already at ultrathin				
		top layer, while				
		subsequent growth				
		contributes only at a				
		gradual correction of				
		the potential in the				

		FE. The emerging picture is confirmed in first-principle calculation indicating the preferences of Au to grow preferentially to different terminated regions and to stabilize distinct ferroelectric polarization.						
45. cobalt (II) comple	APPLIED ORGANOMET ALLIC CHEMISTRY, 3 3 ,e4976 (2019)	This paper presents the synthesis, physico-chemical and biological properties of four new coordination compounds with mixed ligands: acrylate ion (acr) and benzimidazole/benzi midazole derivatives with the general formula [Co(L)(2)(acr)(2)]ce nter dot nH(2)O [(1) L: benzimidazole (HBzIm), n: 0.5; (2) L: 2- methylbenzimidazole (2-MeBzIm), n: 0.5; (3) L: 5- methylbenzimidazole (5-MeBzIm), n: 0; (4) L: 5,6- dimethylbenzimidaz ole (5,6- Me(2)BzIm), n: 0]. Their chemical formulae were achieved correlating the chemical analysis with mass spectrometry data, the ligands	Fund (ESF); Romania n Governm ent [SOP HRD/10 7/1.5/S/8 2514]; Sectorial Operatio nal	Chifiri uc, MC; Bleotu , C; Stanic a, N; Scaete anu, GV; Dulea, C;	3.259	0.334	10.1002/ aoc.4976	Q1

coordination modes
were assigned by
Fourier transform-
infrared
measurements, and
the trigonal
bipyramidal
geometry of cobalt
ion in complexes
was assigned by data
correlation of UV-
Vis-NIR spectra and
magnetic moments
measurements.
Single-crystal X-ray
diffraction reveals a
mononuclear
structure with a
pentacoordinated
cobalt (II) ion,
connected to two
acrylato coordinated
in different modes
and two unidentate
5,6-
dimethylbenzimidaz
ole ligands for
compound (4). The
biological tests were
performed against
several microbial
strains, the
cytotoxicity was
evaluated on HCT8
cellular lines and the
cell cycle analysis
was performed on
HT29 cellular lines.
Microbiological
assays indicated that
Co (II) complexes
present a very good
to good activity
against Candida
albicans 1760,
Enterococcus

	The		subtilis ATCC 6683 and Escherichia coli ATCC 25922. Predictive pharmacokinetic (ADME), toxicity and drug-likeness profiles were evaluated for Co (II) complexes. Our results highlight that Co (II) complexes depicted in the present study are suitable to be used as efficient pharmacological agents. Oxide dispersion- strengthened ferritic steels (ODSFSs) are	European Commun ity of the					
46.	Quality of Fe14Cr ODS Powder Alloys During Milling and Upon Heating and Its Impact on the	METALLURGI CAL AND MATERIALS TRANSACTIO NS A- PHYSICAL METALLURG Y AND MATERIALS SCIENCE, 50A , pp.3282-3294 (2019)	promising structural materials for applications in fusion and fission power reactors, but further improvement in their (high-temperature) mechanical properties and ferrite phase stability is required. This work demonstrates that an approach to produce Fe14Cr ODSFSs with a stable ferrite phase and improved strength could involve grain size strengthening by long-term milling with a tiny amount of nitrogen. Fe-14Cr- 3W-0.4Ti- 0.25Y(2)O(3)	ment Agreeme nt (EFDA) [WP13- MAT]; Romania n Ministry of Research and Innovatio n [PN19- 03, 21N/08.0 2.2019];	Mihal ache, V; Walte r, M; Merci oniu, I; Ordas, N	1.985	0.533	10.1007/ s11661- 019- 05264-3	Q1

	.	1.0			
	powders were ball-	1.2-			
	milled up to 170	PCCDI-			
	hours under an argon				
	atmosphere. In	0871,			
	addition to X-ray	47PCCD			
	diffraction, the	I/2018]			
	change in product				
	quality during				
	milling and upon				
	heating was				
	thoroughly				
	investigated by more				
	sensitive magnetic				
	and thermal analysis				
	by measuring the				
	saturation				
	magnetization				
	sigma(s), coercivity				
	H-c, Curie				
	temperature T-c, and				
	temperature of				
	ferrite-austenite				
	(alpha ->gamma)				
	transition T-alpha -				
	>gamma. A				
	pronounced				
	modification of				
	magnetic and				
	microstructure				
	parameters was				
	observed when				
	milling over 70				
	hours and upon				
	heating above 800				
	degrees C and was				
	found to be				
	generated by long-				
	term milling with a				
	tiny amount of				
	nitrogen. Upon				
	heating, the nitrogen,				
	incorporated during				
	milling, developed a				
	transition region,				
	with the				
	decomposition of				
1	1				

nitrides precipitated
at the earlier stage of
heating followed by
austenite
decomposition,
nitrogen degassing,
and microstructure
refinement to a grain
size of a few tenths
of a nm (e.g., 28 nm
by heating at 910
degrees C of 100-
hour milled powder).
The resulting ferrite
phase with refined
grains is highly
stable to (further)
heating. The
powders milled for
70 and 100 hours
containing 0.175 and
0.500 wt pct
nitrogen,
respectively, were
consolidated at 1100
degrees C with
subsequent annealing
at 1050 degrees C
and subjected to
Vickers hardness and
3-point bending
tests. The steel
produced from the
powder milled for 70
hours shows lower
hardness, higher
density (close to the
theoretical value of
7.8 g/cm(3)), and
fracture strain. The
ductility of this ODS
alloy (0.075 fracture
strain) is comparable
with Eurofer97
(0.075 fracture
strain), whereas its

		strength (2070 MPa ultimate stress) is significantly higher than that of Eurofer97 (1222 MPa ultimate stress). This improvement was attributed to grain size strengthening-the refined grains (promoted by milling with nitrogen) could be effectively pinned by Y-Ti-O dispersoids. The majority of						
Electro chemic al assay for 20S proteas ome 47. activity and inhibiti on with antican cer drugs	<i>TALANTA</i> , 199 , pp.32-39 (2019)	malignant cells, the proteasome is becoming a target for medical treatment. In order to evaluate the mechanisms of action of pharmaceutical compounds on proteasome enzyme inhibition, detecting and characterizing its activity is essential. An electrochemical	Fundaca o para a Ciencia e Tecnolog ia (FCT) - Portugal [PTDC/	Jesus, CSH; Chior cea- Paqui m, AM; Barsa	4.916	0.762	10.1016/j .talanta.2 019.02.0 52	Q1

proteasome enzyme,
based on the
electrochemical
detection of an
electroactive
compound released
upon proteolysis of
an adequate
chymotrypsin-
substrate is
described. By
employing
differential pulse
voltammetric
measurement, the
activity of the 20S
proteasome enzyme
was investigated for different incubation
times of 20S with
oligopeptide
substrate as well as
for different
concentrations of
substrate. Enzyme
kinetic parameters
were determined by
voltammetry and the
electrochemical
assay compared with
fluorescence
spectroscopy.
Electrochemical
quartz crystal
microbalance and
atomic force
microscopy were
also used to
investigate substrate
interaction with the
20S proteasome and
their adsorption at
the electrode surface.
Finally, the new
electrochemical
assay allowed to

		investigate the mechanisms of two different proteasome inhibitor drugs, bortezomib and oprozomib, underlying the applicability of the assay for understanding proteasome inhibitor action.						
surface	<i>JOURNAL OF</i> <i>ALLOYS AND</i> <i>COMPOUNDS</i> , 791 , pp.1098- 1104 (2019)	Er and La ions within a thin layer (of about 1 nm thickness) at the	n Ministry of Research and Innovatio n through Core Program (2019); POC (Europea n Regional Develop ment Fund, Operatio nal Fund	a, Č; Secu, M	4.175	0.601	10.1016/j .jallcom. 2019.03. 267	Q1

	curves are assigned i i i to the recombination of trap defects i i associated with i i i surface states and i i i within the oxidized i i i surface layer. (C) i i i 2019 Elsevier B.V. All rights reserved. i i	
49. Enhanc ed photoco nductivi ty of embedd ed SiGe nanopar ticles by hydroge nation APPLIED SURFACE SCIENCE, pp.403-409 (2019)	We investigate the effect of room- temperature hydrogen-plasma treatment on the photoconductivity of SiGe nanoparticles sandwiched within SiO2 layers. An increase in photocurrent intensity of more than an order magnitude is observed after the hydrogen plasma treatment. The enhancement isNET Project PhotoNa noP UEFISC DI [33/2016] J3/2016] JSIC2 layers. An increase in photocurrent intensity of more than an order magnitude is observed after the hydrogen plasma treatment. The enhancement isNET Project PhotoNa noP UEFISC DI [122/2016] Sultan DI (122/2017) Gudm magnitude is on, n JT; 	016/j usc.2 02.0 Q1

				[159006- 0611]				
50.	Multila yer protecti ve coating s obtaine d by pulsed laser depositi on	APPLIED SURFACE SCIENCE, 479 , pp.1124-1131 (2019)	Devices developed for the aeronautic or space industries must be able to operate in harsh environments. In order to protect devices such as microstrip antennae, various coatings have to be used. Herein, we present the results of obtaining YSZ/A12O3 heterostructures by Pulsed Laser Deposition (PLD) for the protection of planar monopole antennas without changing their performances after the deposition process. The theoretical SRIM- TRIM simulation code results on the effects of ionized radiations incident on a YSZ/A12O3 heterostructure, as well as the physical properties of the YSZ/A12O3 thin films obtained by the PLD technique are also presented. The SRIM studies show that at the same energy range the proton penetration depth is higher than the alpha penetration depth, giving	Ministry of National Educatio n and Scientific Research , RDI Program me for Space Technolo gy and Avanced Research	van, A; Ghene scu, V; Ghene scu, M; Banci u,	0.671	10.1016/j .apsusc.2 019.02.1 86	Q1

		insights about the penetration depth of proton and alpha particles in the studied targets. Our goal is to obtain a multilayer structure able to enhance the endurance of the antenna and microwave circuitry in harsh space environment without reducing the performances under nominal operation conditions. The present work						
Direct Immobilization of Biomol ecules through Magnet ic Forces on Ni 51. Electro des via Ni Nanopa rticles: Applica tions in Electro chemic al Biosens ors	<i>ACS APPLIED</i> <i>MATERIALS</i> & <i>INTERFACES</i> , 11 , pp.19867- 19877 (2019)	describes a new simple procedure for the direct immobilization of biomolecules on Ni electrodes using magnetic Ni nanoparticles (NiNPs) as biomolecule carriers. Ni electrodes were fabricated by electroplating, and NiNPs were chemically synthesized. The chemical composition, crystallinity, and granular size of Ni electrodes, NiNP, and NiNP-modified Ni electrodes (NiNP/Ni) were determined by X-ray diffraction, scanning electron microscopy, and X-ray	Romania n Ministry of Research and Innovatio n through Operatio nal Program me Competit iveness [NANO BIOSUR F-SMIS 103528, PN19-03, 21 N/08.02. 2019]	Barsa n, MM; Enach e, TA; Preda, N; Stan, G; Apost ol, NG; Matei, E; Kuncs er, A; Dicule scu, VC	8.456	1.65	10.1021/ acsami.9 b04990	Q1

photoelectron
spectroscopy (XPS).
The electrochemical
characterization of
Ni electrodes by
cyclic voltammetry
and electrochemical
impedance
spectroscopy
confirmed the
existence of nickel
oxides, hydroxides,
and oxohydroxide
films at the surface
of Ni. Magnetic characterization and
micromagnetic
simulations were
performed in order to
prove that the
magnetic force is
responsible for the
immobilization
process. Further, Ni
electrodes were
employed as
amperometric
sensors for the
detection of
hydrogen peroxide
because it is an
important
performance
indicator for a
material to be
applied in
biosensing. The
working principle for
magnetic
immobilization of
the enzyme-
functionalized NiNP,
without the use of
external magnetic
sources, was
demonstrated for

			glucose oxidase (GOx) as a model enzyme. XPS results enabled to identify the presence of GOx attached to the NiNP (GOx-NiNP) on Ni electrodes. Finally, glucose detection and quantification were evaluated with the newly developed GOx-NiNP/Ni biosensor by amperometry at different potentials, and control experiments at different electrode materials in the presence and absence					
			of NiNP demonstrated their importance in the biosensor architecture.					
52.	Effect of high gamma radiatio ns on physica l properti es of In2S3 thin films grown by chemic al bath depositi on for buffer layer	<i>RESULTS IN</i> <i>PHYSICS</i> , 13 ,1 02115 (2019)	Polycrystalline In2S3 thin films have been grown on SnO2/glass substrates by chemical bath deposition technique and irradiated at different high gamma doses 3, 7, 15 and 40 kGy. X- ray diffraction, Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS), Spectrophotometer, Photoluminescence and Thermoluminescence	Souli, M; Bensa lem, Y; Secu, M; Bartha , C; Encul escu, M; Mejri, A; Kamo un- Turki, N; Badic a, P	3.042	0.368	10.1016/j .rinp.201 9.02.051	Q1

applica	at	were used to		
ions		investigate physical		
		properties of In2S3		
		thin films induced by		
		gamma irradiation.		
		After being		
		irradiated, structural		
		properties of In2S3		
		thin films have		
		shown that preferred orientation has been		
		moved from $(4\ 0\ 0)$		
		plan at 2		
		theta(1)=33.42		
		degrees to a new		
		created orientation at		
		2 theta(2)=38.06		
		degrees for 40 kGy		
		gamma dose. EDS		
		analysis has shown		
		that atomic		
		percentage (S/In) has		
		been strongly varied		
		for 40 kGy which		
		indicate significant		
		changes in		
		stoichiometry.		
		Thermoluminescence		
		of irradiated In2S3		
		thin films has		
		revealed a good		
		sensitivity toward		
		absorbed gamma		
		dose. After		
		irradiation, optical		
		transmittance of		
		In2S3 thin films has		
		been increased from		
		50% to a maximum		
		value of 70% in the		
		visible range for 15		
		kGy dose. Band gap		
		energy E-g has been		
		slightly decreased.		
		Other optical		
		parameters such		

		absorption and extinction coefficients, refractive index and permittivity have been determined. These experimental results show that gamma radiations can be used for tuning physical properties of In2S3 thin films for photovoltaic applications.						
53. Structu e and magne c propert es of highly coerciv e L1(0) nanoco mposit FeMnF thin films	i <i>MATERIALS</i> <i>CHARACTERI</i> <i>ZATION</i> , 152 , pp.245-252 (2019) e	Among the rare- earth-free systems that are currently investigated in search for novel permanent magnet solutions for various applications, with special emphasis on the magnets required to operate in extreme conditions, the FePt binary system, where the tetragonal hard magnetic L1(0) phase can be formed by suitable microstructure processing via annealing, has been extensively studied. A variation of this system, the ternary FeMnPt system, has been also recently shown to exhibit good permanent magnet behavior due to the suitable formation of the L1(0) phase. In	Romania n Ministry of Research and Innovatio n [PN- III-P4- ID-PCE- 2016- 0833]; EU Competit iveness Operatio nal Program me POC Project [P_37_6 97]	Crisan , O; Vasili u, F; Crisan , AD; Merci oniu, I; Schint eie, G; Leca, A	3.22	0.74	10.1016/j .matchar. 2019.04. 028	Q1

addition to be likely
to form the L1(0)
phase as its parent
binary system, the
ternary FeMnPt
benefits from the
reduced costs due to
the reduced amount
of Pt and may exhibit
particular magnetic
structure due to the
influence of the
antiferromagnetic
Mn. In the present
work, we have
employed a mixed
sputtering technique, based on the use of
both elemental and
compound target for
developing L1(0)
FeMnPt thin films
with specific
structural features
that triggers better
magnetic
performances in
terms of coercivity
and maximum
energy products. The
as-obtained films
have been thermally
annealed and
characterized by
means of
transmission electron
microscopy, X-ray
diffraction,
Mossbauer
spectroscopy,
magneto-optic Kerr
effect (MORE) and
SQUID
magnetometry. The
aim is to correlate
the Mn induced

		microstructural and lattice changes with the magnetic properties and to optimize the microstructure for an early formation of the ordered L1(0) phase and increased coercivity compared to the as-prepared, structurally disordered, face centred cubic initial state of the films.						
Hybrid layered double hydroxi des- curcumi n thin films deposit ed via Matrix Assiste d Pulsed Laser Evapor ation- MAPL E with photolu minesce nce properti es	<i>APPLIED</i> <i>SURFACE</i> <i>SCIENCE</i> , 478 , pp.754-761 (2019)	Curcumin (CR) is a natural compound with a well-known antioxidant and therapeutic activity. Its stability may be enhanced when incorporated in different matrices as a layered double hydroxides (LDH) matrix. Curcumin intercalated layered double hydroxide nanohybrid is a potential drug delivery system for effective photodynamic therapy in human breast cancer or skin cancer. The synthesis of the hybrid LDH- CR powder implies the dissolution of CR in water or in another organic solvent which is miscible with water. Since the solubility of curcumin in water is	(UEFISC DI) Romania [PN-III- P1-1.2- PCCDI- 2017-	i, F; Vlad, A; Birjeg a, R; Tozar, T; Secu,	5.155	0.671	10.1016/j .apsusc.2 019.02.0 11	Q1

very weak, the aim
of this study is to
investigate the effect
of the solvent
employed for its
dissolution on the
structural and
physico-
chemicalphotolumin
escent properties of
the resulting hybrid
materials. Four
powders of curcumin
(CR)-containing
Mg2.5Al-LDH
hybrids (Mg/Al
molar ratio of 2.5)
were prepared by co-
precipitation (P) and
reconstruction (R)
using two different
solvents for the
dissolution of
curcumin: (i) an
alkaline aqueous
solution (A), and (ii)
ethanol (E). The
reconstruction used
the calcinated (460
degrees C for 18 h)
form of the parent
Mg2.5Al-LDH
powder. All the
solids were
characterized by X-
ray diffraction
(XRD), and FTIR
spectroscopy. The
FTIR-ATR spectra
of the all the
powders except the
powder prepared via
reconstruction in
ethanol exhibit LDH
characteristics,
consistent with the

XRD results. Matrix		
Assisted Pulsed		
Laser Evaporation		
(MAPLE) was		
employed for the		
deposition of hybrid		
LDH-CR thin films.		
Aqueous solutions of		
the as prepared		
hybrid LDH-CR		
powders were frozen		
and used as targets		
for MAPLE		
depositions. The		
films were deposited		
using a nanosecond		
laser emitting at 266		
nm. MAPLE is considered a "soft"		
deposition technique		
suitable to conserve		
the CR stability.		
XRD, scanning		
electron microscopy,		
FT-IR spectroscopy		
and fluorescence		
measurements were		
used to characterize		
the deposited films		
in order to evidence		
the influence of the		
preparation methods		
on the structural and		
photophysical		
characteristics of the		
hybrid LDH-CR		
films.		
of xFe2O4/SiO(2)nanoc Operatio ng, T		
nickel JOURNAL OF omposites ($x = 0$, nal Leve	21,	10.1016/j
content ALLOYS AND 0.25, 0.50, 0.75 and Program EA;		iallcom
55. on COMPOUNDS 1.00) were "Increase Cada	ar, 4.175 0.601	2019.01. Q
structur ,786 , pp.330- synthetized by a of O;		363
al 240 (2010) modified colorid Economi Dec		
al, 340 (2019) modified solgel Economi Dead	2,	
morpho logical diffraction (XRD) Economi Dead method. The X-ray c IG;		

and	patterns revealed the	iveness"	ndesc	
magneti	crystalline phases	Priority	u, L;	
C	and the crystallite	Axis II,	Barbu	
properti	size variation with	INOVA-	-	
es of	increasing annealing	OPTIMA	Tudor	
NixCo1	temperature and Ni	, [1887,	an, L	
	content. The lattice	, [1007, SMIS-		
- xFe2O4	constants, cell	CSNR		
/SiO2	· · ·			
	volume, X-ray	49164]; Romania		
nanoco	density, hopping			
mposite	length in A and B	n M ²		
S	sites, average	Ministry		
	crystallites size and	of		
	relative crystallinity	Research		
	calculated from XRD			
	data are consistent	Innovatio		
	with the mixed	n, CNCS		
	spinel structure. The	-		
	transmission electron			
	microscopy images	DI within		
	reveal the spherical	PNCDI		
	shape of	III [PN-		
	nanoparticles and	III-P1-		
	their size increase	1.1-MC-		
	with increasing	2018-		
	annealing	0816];		
	temperature. The	CNCS -		
	magnetic properties	UEFISC		
	such as saturation	DI		
	magnetization (M-s),	Romania		
	remanent	[PN-III-		
	magnetization (M-r),	-		
	coercivity (H-c),	PCE-		
	magnetic moments	2016-		
	per unit cell (n(B))	0534,		
	and anisotropy (K)	PN-III-		
	decrease with	P4-ID-		
	increasing Ni	PCCF-		
	content, but they	2016-		
	increase with the	0112];		
	annealing	Core		
	temperature due to	Program		
	the influence of the	[PN10N]		
	cation stoichiometry			
	and their specific			
	sites occupancy. The			

			Mossbauer spectra showed the characteristic magnetic patterns of Co and Ni spinels and revealed only the presence of Fe3+. The Ni-rich nanocomposites presented superparamagnetic behavior, while the Ni-poor nanocomposites ferromagnetic behavior. (C) 2019 Elsevier B.V. All rights reserved. Powders of						
56.	CO2 methan ation catalyze d by oriented MoS2 nanopla telets support ed on few layers graphen e	APPLIED CATALYSIS B- ENVIRONME NTAL, 245 , pp.351-359 (2019)	molybdenum disulfide platelets strongly grafted on graphene have been prepared by pyrolysis of ammonium alginate containing adsorbed various proportions of (NH4)(2)MoS4. After pyrolysis, formation of MoS2	UEFISC DI [PN- III-P4- ID-PCE- 2016- 0146, 121/2017 , PN-III- P1-1.2- PCCDI- 2017- 0541]; Spanish Ministry of Economy and Competit iveness [CTQ201 5-69653- CO2- R1]; Generalit at Valencia [Promete	A; He, JB; Jurca, B; Cojoc aru, B; Bucur, C; Parvul escu, VI;	14.229	1.918	10.1016/j .apcatb.2 018.12.0 34	Q1

			sharply contrasts with that of bulk MoS2 that promotes the reverse water gas shift, affording CO as the main product. Characterization of the spent MoS2/G catalyst shows the partial conversion of external MoS2 into MoO3. Comparison of the catalytic activity of MoS2/G with that of MoO3/G shows that the latter is less efficient, but more selective for CO2 methanation. We propose a simple strategy to obtain a	083] Romania					
57.	Highly - sensitiv e near infrared lumines cent nanothe rmomet ers based on binary mixture	JOURNAL OF ALLOYS AND COMPOUNDS	luminescence intensity ratio nanothermometer operating in the near infrared range (1000- 1700 nm) by use of binary mixtures of lanthanide doped Y2O3 selected as 1% Ho - Y2O3 + 1%Er - Y2O3 and 1%Ho - Y2O3 + 1%Nd - Y2O3. All nanoparticles were synthetized by citrate complexation method and thermally annealed at 800 degrees C. The temperature evolution of the emission properties was monitored in the range of 297-472 K and analyzed in	n Ministry of Research and Innovatio n [PN 18 13 01 02, PN19- 030101]; Romania n National Authorit y for Scientific Research and Innovatio n, CNCS - UEFISC DI [PN- III-P4- ID-	Avra m, D; Colbe a, C; Florea , M; Tisean u, C	4.175	0.601	10.1016/j .jallcom. 2019.01. 162	Q1

		towns of out to the	DCE2016				
		terms of emission	PCE2016				
		shape, intensity,	-0692]				
		dynamics, excitation					
		wavelength,					
		acquisition mode and					
		weight ratio of the					
		binary mixture. A					
		maximum relative					
		sensitivity of 1%K-1					
		at 297 K was					
		recorded for the 3/1					
		weight ratio Ho -					
		Y2O3 + Er - Y2O3					
		binary mixture upon					
		excitation at 536.8					
		nm. For the more					
		appropriate					
		excitation					
		wavelength for					
		bioimaging					
		applications at 649.7					
		nm, a relative					
		sensitivity of 0.55-					
		0.6% K-1 was					
		recorded in the					
		relevant					
		physiological					
		temperature range					
		(300-320 K) for the					
		3/1 weight ratio Ho -					
		Y2O3 + Er - Y2O3					
		binary mixture. To					
		the best of our					
		knowledge, our					
		study also represents					
		a first report on the near -infrared					
		luminescence					
		(around 1200 nm)					
		lifetime thermometry					
		for a Ho doped					
		nanoparticle.					
		Comparison with the					
		literature					
		demonstrates that our					
		system represents a					
	1		1			I	

		promising near- infrared thermometer, with a non-sophisticated and reproducible configuration that is open to multiple optimization routes. (C) 2019 Elsevier B.V. All rights reserved.						
is-f beh r of per ite cell 58. from the per tive the me em	e steres free havio of rovsk solar Ils DM E e e solar Ils DM <i>JOURNAL OF</i> <i>MATERIALS</i> <i>CHEMISTRY</i> <i>C</i> ,7, pp.5267- 5274 (2019) (2	perovskite solar cells without J-V hysteresis it is crucial to distinguish between genuine performance improvements and measurement artifacts. We focus on two of the parameters that influence the dynamic J-V scans,	of Research and Innovatio n [PN18- 090205, PN19- 030101]; UEFISC DI [PN- III-P1- 1.1-PD- 2016- 1546,	Beslea ga, C; Tomul escu, AG; Leona	6.641	1.159	10.1039/ c8tc0599 9c	Q1

			defining a hystoria:						
			defining a hysteresis						
			index (HI) for the						
			characterization of						
			dynamic J-V scans.						
			Using HI, aging						
			effects are also						
			investigated,						
			establishing a						
			potential connection						
			between the sample						
			degradation and the						
			variation of the						
			maximal hysteresis						
			on one hand, and the						
			relaxation time scale						
			of the slow process						
			on the other hand.						
			Pre-poling induced						
			recombination						
			effects are identified.						
			In addition, our						
			analysis based on						
			sample pre-biasing						
			reveals potential						
			indications regarding						
			two types of slow						
			processes, with two						
			different relaxation						
			time scales, which						
			provides further						
			insight regarding						
			ionic migration.						
	La0.75		The influence of the		Florea				
	Sr0.25		B type cation from		, M;				
	XO3 (X		the ABO(3)	French	Soma				
	i i		. ,	Ministry					
	= Fe,		perovskite	of	cescu,				
	Mn or	CATALYSIS	formulation	Foreign	S;				
	Cr)	SCIENCE &	La0.75Sr0.25XO3	Affairs	Postol			10.1039/	
59.	with	TECHNOLOG	(LSX, where X is Fe,	[38371Y	e, G;	5.726	1.131	c9cy000	Q1
	coking	VQ nn 2351-	Mn or Cr) on the C	[363711 C];	Urda,	5.720	1.1.51	65h	× 1
	toleranc	2366 (2019)	and H2S tolerance	UEFISC	A;			0.511	
	e for	2300 (2019)	and its catalytic		Neatu,				
	CH4/H		activity for the		F;				
	20		methane/water	[83BM/2	Neatu,				
	reaction		reaction has been	017]	S;				
	: effect		studied. The samples		Massi				
			staated. The sumples		110001				

of H2S	were prepared by a	n, L;	
on 1125	simple and cost-	Gelin,	
catalyti	efficient citrate	P	
	method. The	ſ	
C			
perform	exhaustive		
ance	characterization of		
	the bulk and surface		
	properties of the		
	catalysts has been		
	accomplished by		
	means of		
	complementary		
	methods: nitrogen		
	adsorption-		
	desorption isotherm		
	measurements, XRD,		
	TPR and XPS. Their		
	catalytic properties		
	in CH4/H2O		
	reactions (CH4/H2O		
	molar ratios of 10		
	and 1) were studied		
	in the presence and		
	absence of H2S in		
	order to evaluate		
	their potential use as		
	anode materials in		
	solid oxide fuel cells		
	operated on natural		
	gas. Before addition		
	and upon		
	suppression of H2S,		
	the activity varied in		
	the following order:		
	LSF > LSM >> LSC.		
	This correlates with		
	the oxygen mobility		
	determined by TPR.		
	A strong promoting		
	effect of H2S on the		
	catalytic activity is		
	observed for LSC,		
	which makes this		
	sample the most		
	active of the series,		
	while H2S has a		

			weak influence on the other perovskites. The oxygen vacancies and the presence of S2- were identified as being responsible for the enhanced catalytic activity upon H2S addition. The synthesis of semiconductor nanocrystals with					
60.	tion in	<i>SCIENTIFIC</i> <i>REPORTS</i> , 9 ,68 94 (2019)	controlled doping is highly challenging, as often a significant part of the doping ions are found segregated at nanocrystals surface, even forming secondary phases, rather than incorporated in the core. We have investigated the dopant distribution dynamics under slight changes in the preparation procedure of	UEFISC DI [PN18- 110201]; Romania n Ministry of Research and Innovatio n [PN-II- RU-TE- 2014-4- 0939, PN-III- P4-ID- PCE- 2016- 0529, PN-III- P1-1.2- PCCDI- 2017- 0062, 12/2018]	Ghica, D; Vlaicu , ID; Stefan , M; Maral oiu, VA; Joita, AC; Ghica, C	1.286	10.1038/ s41598- 019- 43388-z	Q1

starting solution in
the co-precipitation
synthesis from
nitrate precursors
lead to the decrease
of the Mn2+ ions
concentration in the
core of the ZnO
nanocrystals and
their accumulation in
minority phases,
until similar to 79%
of the Mn2+ ions
were localized in a
thin disordered shell
of zinc
hydroxynitrate
(ZHN). A lower
synthesis
temperature resulted
in polycrystalline
Mn-doped ZHN.
Under isochronal
annealing up to 250
degrees C the bulk
ZHN and the
minority phases from
the ZnO samples
decomposed into
ZnO. The Mn2+ ions
distribution in the
annealed
nanocrystals was
significantly altered,
varying from a
uniform volume
distribution to a
preferential
localization in the
outer layers of the
nanocrystals. Our
results provide a
synthesis strategy for
tailoring the dopant
distribution in ZnO
nanocrystals for

61.Dextran -Coated Zinc- Doped Hydrox yapatite for Biomed ical Applica tionsDextran Action Applica tical Applica tionsDextran-coated zinc- doped hydroxyapatite (ZnHApD) was synthesized by an adapted sol-gel method. The stability of ZnHApD nanoparticles in an aqueous solution was analyzed using ultrasonic measurements. The analysis of the evolution in time of the attenuation for each of the frequencies was performed. The X- ray diffraction (XRD) investigations exhibited that no impurity was found. The morphology, size and size distribution of the ZnHApD sample was investigated by transmission electron microscopy (TEM) and SEM results showed that the ZnHApD particles have an ellipsoidal shape and a narrow distribution of sizes. The cell growth and toxicity of HEK-293 cells were	Romania n Ministry of Research and Innovatio n [PN- III-P1- 1.2- PCCDI- 2017- 0629, 43PCCD I/2018]	3.164 0.592	10.3390/ polym11 050886	Q1
---	--	-------------	-------------------------------	----

	1					1			
			investigated on the						
			ZnHApD solution						
			for four different						
			concentrations and						
			analyzed after 24 and						
			48 h. The ZnHApD						
			solution presented a						
			non-toxic activity						
			against HEK-293						
			cells for all analyzed						
			concentrations. The						
			antibacterial assay						
			revealed that all the						
			tested						
			microorganisms						
			were inhibited by the						
			ZnHApD dispersion						
			after 24 and 48 h of						
			incubation. It was						
			observed that the						
			effect of the						
			ZnHApD solution on						
			bacteria growth						
			depended on the						
			bacterial strain. The						
			Porphyromonas						
			gingivalis ATCC						
			33277 bacterial						
			strain was the most						
			sensitive, as a growth						
			inhibition in the						
			presence of 0.075 mu						
			g/mL ZnHApD in						
			the culture medium						
			was observed.						
			We report on the	Romania	Linon				
	Pulsed		fabrication of dye-	n	J;				
	Laser		sensitized solar cells	Ministry	Socol,				
	Fabricat		with a TiO2 buffer	of	G;				
	ion of	NANOMATERI	layer between the	Research	1 '			10.3390/	
62.	1102	ALS,9,746	transparent	and	GE;	4.034	0.704	nano905	Q1
02.	Buffer		conductive oxide	Innovatio	1 '	4.034	0.704	0746	VI VI
	Layers	(2019)			1			0740	
	for Dye		substrate and the	n through	1 · · · ·				
	Sensitiz		mesoporous TiO2	the Core					
	ed		film, in order to	Program	escu,				
			improve the	me	C;				

S	Solar	photovoltaic	[LAPLA	Georg		
1 1	Cells	conversion	S VI	escu,		
		efficiency of the	16N/08.0			
		device. The buffer	2.2019]	Popes		
		layer was fabricated]	cu-		
		by pulsed laser		Pelin,		
		deposition whereas		G;		
		the mesoporous film		Proda		
		by the doctor blade		n, G;		
		method, using TiO2		Girtu,		
		paste obtained by the		MA;		
		sol-gel technique.		Mihail		
		The buffer layer was		escu,		
		deposited in either		IN		
		oxygen (10 Pa and		-		
		50 Pa) or argon (10				
		Pa and 50 Pa) onto				
		transparent				
		conducting oxide				
		glass kept at room				
		temperature. The				
		cross-section				
		scanning electron				
		microscopy image				
		showed differences				
		in layer morphology				
		and thickness,				
		depending on the				
		deposition				
		conditions.				
		Transmission				
		electron microscopy				
		studies of the TiO2				
		buffer layers				
		indicated that films				
		consisted of grains				
		with typical				
		diameters of 10 nm				
		to 30 nm. We found				
		that the photovoltaic				
		conversion				
		efficiencies,				
		determined under				
		standard air mass 1.5				
		global (AM 1.5G)				
		conditions, of the				
		conditions, or the				

	solar cells with a buffer layer are more than two times larger than those of the standard cells. The best performance was reached for buffer layers deposited at 10 Pa O- 2. We discuss the processes that take place in the device and emphasize the role of the brush-like buffer layer in the performance increase.	Loint					
63. nt ferroele	We report the structural, dielectric, elastic, ferroelectric and ferromagnetic properties of multiferroic (Nd, Fe)doped PbTiO3 perovskite ceramics with composition (Pb-0.88 Nd-0.08)(Ti-0.94 Fe-0 .04 Mn-0.02)O-3, prepared by different solid state reaction methods: the first one based on a single-stage calcination (Method I) and the second based on a double- stage calcination (Method II). Structural, dielectric and anelastic measurements evidenced a double phase transition for samples prepared by Method I, which has		Craciu n, F; Corde ro, F; Cerne a, M; Fruth, V; Atkins on, I; Stanic a, N; Vasile , BS; Trusc a, R; Iuga, A; Galizi a, P; Galass i, C	3.45	0.454	10.1016/j .ceramint .2018.08. 147	Q1

			been attributed to	Romania					
			phase separation.	n					
			This phase	Governm					
			separation has been	ent,					
			confirmed also by	under					
			TEM and HRTEM	POS-					
			investigations.	CCE					
			Samples prepared by						
			Method II showed a	CEURE					
			single phase	MAVSU					
			transition from	[01/01.03					
			paraelectric to	.2009];					
			ferroelectric phase.	[PN09-					
			We found coexistent	-					
			ferroelectric and	= = u					
			ferromagnetic						
			properties, also at						
			room-temperature,						
			but only for ceramics						
			prepared by Method						
			II. The crucial role of						
			calcination process						
			for avoiding phase						
			separation and						
			obtaining						
			homogeneous						
			structures with						
			ferroelectric and						
			ferromagnetic order						
			is underlined.						
					Feldio				
	Deposit		This paper presents						
	ion		an evaluation		rean,				
	tempera		regarding the		D; Cristo				
	ture		influence of substrate material		Criste				
	influenc			PRO-DD					
	e on the	APPLIED	characteristics and	(POSCC	Tierea			10 1016/	
	wear	SURFACE	deposition	E,	n, M; Croito			10.1016/j	
64.	behavio	SCIENCE,475,	parameters on the	0.2.2.1.)	Croito	5.155	0.671	.apsusc.2	Q1
	ur of	pp.762-773	tribological	[123,	ru, C;			019.01.0	
	carbon-	(2019)	behaviour of carbon-	11/2009,	Gabor			28	
	based		based coatings.	SMIS	, C;				
	coating		Chromium nitride	2637]	Jakab-				
	s		ceramic interlayers		Farkas				
	deposit		and carbon-based		, L;				
	ed on		thin films were		Cunha				
	1		deposited by		, L;	1	1	1	1

har	rdene	magnetron sputtering	Barra	
d s		on hardened AISI	das,	
		5115 (16MnCr5)	NP;	
		case hardening steel.	Alves,	
		The physical vapour	E;	
		deposition (PVD)	Craciu	
		deposition was	n, V;	
		performed at three	Marin,	
		different	A;	
		temperatures: 180	Moura	
		degrees C, 200	, C;	
		degrees C and 250	Leme,	
		degrees C. The	J;	
		chemical	Socol,	
		composition of the	M;	
		samples was	Craciu	
		assessed by	n, D;	
		Rutherford	Cosnit	
		Backscattering	a, M;	
		Spectroscopy (RBS),	Munte	
		the structure by X-	anu, D	
		ray Diffraction		
		(XRD), and the		
		surface morphology		
		by Atomic Force		
		Microscopy (AFM).		
		The surface		
		chemistry was		
		analysed by X-ray		
		Photoelectron		
		Spectroscopy (XPS)		
		and Raman		
		Spectroscopy. The		
		coatings are		
		homogeneous,		
		amorphous, with a		
		smooth surface. The		
		mechanical		
		behaviour has been		
		assessed on a pin-on		
		disk rotational		
		tribometer (wear		
		characteristics), on a		
		micro scratch tester		
		(adhesion to the		
		substrate), by ball-		

					1	1			1
			cratering (film						
			thickness) and by						
			nanoindentation						
			(hardness and the						
			modulus of						
			elasticity). A strong						
			correlation has been						
			observed between						
			the substrate						
			characteristics and,						
			more importantly,						
			the deposition						
			temperature, and the						
			mechanical						
			properties of the						
			assembly. The						
			fracture toughness is						
			positively influenced						
			by the presence of						
			the ceramic						
			chromium nitride						
			interlayer. The						
			modulus of elasticity						
			and friction						
			coefficient (both in						
			dry and lubricated						
			conditions) are						
			decreased for higher						
			deposition						
			temperatures,						
			however the higher						
			deposition						
			temperature						
			negatively affects the						
			mechanical						
			characteristics of the						
			steel substrate.						
	Nogativ			EURAT	Dinca,				
	Negativ e ion-		Co-sputtering of tungsten-aluminum	OM	P;				
		SUDEACE P	fusion relevant						
		SURFACE & COATINGS	materials in a dual-	research	Tiron,			10.1016/j	
65				and	V;	2 102	0.512	.surfcoat.	01
65.	m	TECHNOLOG		training	Velicu	5.192	0.512	2019.02.	Q1
		<i>Y</i> , 363 , pp.273-	Magnetron	program	, IL;			019	
	n in mixed	281 (2019)	Sputtering discharge, operated in different	me 2014- 2018	Poros nicu,				
	mivod	1	innerated in different	17018	Intell	1	1	1	1
	W-Al		Ar-D-2 gas mixtures,						

layers		was investigated in	•	Butoi,			
co-		gas phase by means	POSCCE				
deposit		of energy-resolving	-0 2.2.1,				
ed in		mass spectrometry.	SMIS-	A;			
dual-		Experimental results	CSNR	Grigor			
HiPIM		indicate that the total		e, E;			
S		ion flux and its	901	C, L, Costin			
5		composition are	[257/28.0]				
		strongly dependent	-	, C, Lungu			
		on sputtering gas	9.2010]	, CP			
		composition and the		, CI			
		-					
		average power					
		applied to the targets.					
		During single					
		HiPIMS operation					
		with W target, the D-					
		ions are the most					
		abundant species.					
		The measured D- ion					
		flux shows an					
		increase with the					
		rising of D-2 content					
		in Ar-D-2 gas					
		mixture and a linear					
		increase with the					
		power applied to the					
		W target. In contrast,					
		during dual-HiPIMS					
		operation, a decrease					
		of D- ion flux was					
		observed when the					
		input power applied					
		to the Al target was					
		increased. The origin					
		of different					
		deuterium ion					
		species and retention					
		mechanisms are					
		discussed. The					
		surface morphology,					
		microstructure and					
		chemical					
		composition of the					
		W-Al coatings					
		obtained in Ar-D-2,					
		were investigated by					

			means of, Atomic						
			Force Microscopy, X-ray diffraction and						
			Glow Discharge						
			Optical Emission						
			Spectroscopy.						
			GDOES depth						
			profiles show the						
			presence of a large						
			amount of deuterium						
			(up to 21 at.%) in the						
			mixed W-Al layers						
			and indicate that the						
			D retention in the						
			mixed W-Al layers is						
			mainly related to the						
			W in-depth						
			concentration and						
			less dependent on the						
			Al one. The intense						
			and energetic						
			bombardment of the						
			growing film with D-						
			ions seems to be						
			responsible for the						
			large amount of D						
			retained in the W-Al						
			layers.						
			Growth of Ag films	Romania					
			of up to 30 nm	n					
	Growth		thickness on Si(1 1	Ministry	D .				
	of		1) 7 x 7 at room	for	Bocir				
	Ag(111		temperature is	Research					
) on		investigated by low	and	AE;				
	Si(111)	APPLIED	energy electron	Innovatio				10 1016/:	
	with	SURFACE	diffraction (LEED),	n through				10.1016/j	
66.	nearly	SCIENCE,473,	X-ray photoelectron	the	RM;	5.155	0.671	.apsusc.2	Q1
	flat	pp.433-441	spectroscopy (XPS)	NIMP	Apost			018.12.1 67	
	band	(2019)	and scanning tunneling	Core Program	ol, NG;			07	
	and		microscopy (STM).	[PN18-	Teodo				
	abrupt		LEED revealed the	11/2018]	rescu,				
	interfac		coexistence of Ag		CM				
	e		and Si spots starting	, UEFISC					
1									
			with 1 monolayer	DI					

			1 1 1 1	(D) 1			
			deposited. The Ag	[PN-III-			
			lattice constant,	P1-1.2-			
			starting with 25 ML,	PCCDI-			
			is slightly higher	2017-			
			than for bulk Ag and	0152,			
			increase linearly with	75PCCD			
			Ag thickness,	I/2018];			
			reaching about 4.2	Institute			
			nm for the thickest	of			
			films. The average	Atomic			
			terrace widths	Physics			
			detected from LEED	[18-			
			spot profile analysis	ELI/2016			
			are about 30 nm for]			
			clean Si $(1 \ 1 \ 1) \ 7 \ x \ 7$	L			
			and about 5.5 nm for				
			the thickest $Ag(1 \ 1)$				
			1) film, in agreement				
			with STM				
			observations. The				
			intensity variation of				
			core levels analyzed				
			by XPS is taken into				
			account by a model				
			assuming the initial				
			formation of Ag				
			islands with linear				
			variation of coverage				
			vs. the amount of Ag				
			deposited, followed				
			by growth in a quasi				
			layer-by-layer mode.				
			The interface barrier				
			is in the range of 0.4				
			eV, lower than all				
			values reported				
			previously. Ag				
			deposited on Si(1 1				
			1) 7 x 7 at room				
			temperature provides				
			flat $Ag(1 \ 1 \ 1)$ for				
			synthesis of 2D				
			materials, and may				
			be used for low				
			barrier Schottky				
			diodes.				
L							

67. 2 67. 2 7 67. 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	cyclode ktrin comple kes for he detectio n of oxidativ e stress nitiator	ELECTROCHI	The development of coenzyme Q(10) (CoQ(10)) based electrochemical sensor for the detection of oxidative stress initiators is described for the first time. The sensor relies on CoQ(10) redox properties. CoQ(10) was immobilized at the surface of glassy carbon electrodes (GCE) in combination with cyclodextrins (CD), alpha-CD or beta- CD, that ensure the formation of a well dispersed CoQ(10) film. Nanostructured thin films of CoQ(10) alone and in complexes with alpha-CD or beta-CD at the electrode surface were characterized by scanning electron microscopy (SEM) and Fourier- transformed infrared spectroscopy (FTIR), enabling to identify the morphology of the films and the interactions between the CoQ(10) and CD. Nafion (R) was used to ensure sensor stability. The optimization of the CoQ(10) sensor configuration was	L'Oreal- UNESC O for Women in Science Program- Romania ; Romania n Ministry of Research and Innovatio n through Operatio nal Program me Competit iveness 2014- 2020 [NANO BIOSUR F-SMIS 103528, PN18- 110101]	Barsa n, MM; Dicule scu, VC	5.383	0.81	10.1016/j .electacta .2019.02. 060	
---	---	------------	--	---	--	-------	------	---	--

			made by assessing CoQ(10) redox properties through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), correlated with the results obtained from SEM and FTIR characterization. Next, the sensor in the optimized configuration, GCE/alpha-CD + CoQ(10)/Nafion (R), was applied for the detection of oxidant molecules, hydrogen peroxide and the superoxide radical, through the evaluation of the CoQ(10) redox properties monitored by fixed potential chronoamperometry and square wave voltammetry (SWV). (C) 2019 Elsevier Ltd. All rights reserved.						
68.	Radial heteroju nction based on single ZnO- CuxO core- shell nanowir e for photode	SCIENTIFIC REPORTS, 9 ,55	ZnO-CuxO core- shell radial heterojunction nanowire arrays were fabricated by a straightforward approach which combine two simple, cost effective and large-scale preparation methods: (i) thermal oxidation in air of a zinc foil	Educatio n, Research , Develop ment and Innovatio	Costas , A; Floric a, C; Preda, N; Apost ol, N; Kuncs er, A; Nitesc u, A;	4.011	1.286	10.1038/ s41598- 019- 42060-w	Q1

	tector		for obtaining ZnO	(UEFISC	Encul				
	applicat		nanowire arrays and	DI),	escu, I				
	ions		(ii) radio frequency	Romania					
			magnetron sputtering	[PN-III-					
			for covering the	P2-2.1-					
			surface of the ZnO	PED-					
			nanowires with a	2016-					
			CuxO thin film. The	1249,					
			structural,	IDEI					
			compositional,	124/2017					
			morphological and];					
			optical properties of	Romania					
			the high aspect ratio	n					
			ZnO-CuxO core-	Ministry					
			shell nanowire arrays	•					
			were investigated.	Research					
			Individual ZnO-	and					
			CuxO core-shell	Innovatio					
			nanowires were	n [PN18-					
			contacted with Pt	11]					
			electrodes by means	11]					
			of electron beam						
			lithography						
			technique, diode						
			behaviour being						
			demonstrated.						
			Further it was found						
			that these n-p radial						
			heterojunction						
			diodes based on						
			single ZnO-CuxO						
			nanowires exhibit a						
			change in the current						
			under UV light						
			illumination and						
			therefore behaving as						
			photodetectors.						
	Evaluat		This study proves	Romania	Predoi				
	ion of		that the new	n	, D;				
	Antibac		developed zinc-	Ministry	Iconar				
		NANOMATERI	-	of	u, SL;			10.3390/	
				Research		4 034	0.704	nano904	Q
69.	Activity	ALS.9.515	invaroxyapatite	I Cocaron					
69.	Activity of Zinc-		hydroxyapatite (ZnHAp) colloids by		1	1.051	0.701		
69.	of Zinc-		(ZnHAp) colloids by	and	, MV;		0.701	0515	
69.					, MV;				

Colloid	 pharmaceutical,	1.2-	M;				
s and	medical, and	PCCDI-	Guega				
Dispers	environmental	2017-	n, R;				
ion		0629,	Buton,				
Stabilit	nanoparticles were	43PCCD	N				
y Using	stabilized in an	I/2018]	- ,				
Ultraso	aqueous solution,	12010]					
unds	and their colloidal						
unus	dispersions have						
	been characterized						
	by different						
	techniques. Scanning						
	Electron Microscopy						
	(SEM) was used to						
	get information on						
	the morphology and						
	composition of the						
	investigated samples.						
	Energy-dispersive X-						
	ray spectroscopy						
	(EDX) analysis						
	confirmed the						
	elemental						
	compositions of						
	ZnHAp colloidal						
	dispersions. The						
	homogeneous and						
	uniform distribution						
	of constituent						
	elements (zinc,						
	calcium, phosphorus,						
	oxygen) was						
	highlighted by the						
	obtained elemental						
	mapping results. The						
	X-ray diffraction						
	(XRD) results of the						
	obtained samples						
	showed a single						
	phase corresponding						
	to the hexagonal						
	hydroxyapatite. The						
	characteristic bands						
	of the hydroxyapatite						
	structure were also						
	evidenced by						

Fourier-transform
infrared
spectroscopy (FTIR)
analysis. For a
stability assessment
of the colloidal
system, -potential for
the ZnHAp
dispersions was
estimated. Dynamic
light scattering
(DLS) was used to
determine particles
dispersion and
hydrodynamic
diameter (D-HYD).
The goal of this
study was to provide
for the first time
information on the
stability of ZnHAp
particles in solutions
evaluated by non-
destructive
ultrasound-based
technique. In this
work, the influence
of the ZnHAp
colloidal solutions
stability on the
development of
bacteria, such as
Escherichia coli (E.
coli) and
Staphylococcus
aureus (S. aureus),
was also established
for the first time. The
antimicrobial activity
of ZnHAp solutions
was strongly
influenced by both
the stability of the
solutions and the
amount of Zn.

Fife of th processor contager the ball- mill pow s and SPS cons dation 70. ture the grain refir ent, dens and Vich hard s of Fe14 ODS ferri alloy	ne cess trol nt in - ed vder d - soli on pera on sity kers lnes 4Cr Stic	Fe-14Cr-0.4Ti- 0.25Y(2)O(3) ferritic steels were produced by varying the amount of residual process control agent, PCA (ethanol), in the ball- milled powders and changing the spark- plasma-sintering, SPS, temperature. Near the-oretical density (99.3%), high Vickers hardness (501-920 HV, measured by applying a load of 100 g for 5 s) and fine grain size (26-36 nm), very stable against heating, can be achieved on ODS ferritic steels, consolidated from powders with a low amount of PCA and processing temperature in the range of 1000 degrees C. Additional grain refinement occurs near alpha -> gamma transition which is generated by the reaction of the traces of PCA with the ferritic matrix upon heating. High local temperatures and the evolved thermally activated processes, at the contact points between particles/at	European Commun ityEurop ean Commun ity (EC) [WP13- MAT]; Romania n Ministry of Research and Innovatio n [PN18- 110101]; CCDI- UEFISC DI [PN- III-P1- 1.2- PCCDI- 2017- 0871, 47PCCD I/2018]	Mihal ache, V; Merci oniu, I; Velea, A; Palade , P	3.413	0.588	10.1016/j .powtec. 2019.02. 006	Q1
---	---	---	--	---	-------	-------	--	----

			the particle surfaces during SPS- consolidation, were demonstrated to be the main factors responsible for improved densities and hardness. The role of PCA in the sintering, thermal and microstructure particularities and its impact on the quality of the final steel was thoroughly analysed throughout the work. (C) 2019 Elsevier B.V. All rights reserved. In analogy with						
71.	Spontan eous symmet ry breakin g in the laser transitio n	<i>PHYSICAL</i> <i>REVIEW</i> <i>B</i> , 99 ,115313 (2019)	In analogy with equilibrium phase transitions, we address the problem of the instability to symmetry-breaking perturbations of systems undergoing a laser transition. The symmetry in question is the U(1) invariance with respect to a phase factor, and the perturbation is a coherent field E, coupled to the exciton. At the rate- equation level we analyze first the case of a cavity containing a single, two-level emitter, and then a chain of such cavities interacting by photon-hopping	CNCS- UEFISC DI Grant [PN-III- P4-ID- PCE- 2016- 0221]	Gartn er, P	3.736	1.089	10.1103/ PhysRev B.99.115 313	Q1

			processes. In both cases, spontaneous symmetry breaking takes place when the						
			system is in the lasing phase. For the laser transition, the						
			analog of the thermodynamic limit is the scaling limit of						
			vanishing cavity loss and light-matter						
			coupling, kappa -> 0, g -> 0, so that g(2)/kappa remains						
			finite. We show that in the lasing regime,						
			anomalous averages persist in the E -> 0 limit, provided that						
			the scaling limit is performed first. Lasing diagnosis						
			based on robust anomalous averages						
			is compared numerically with the familiar coherence criterion $g((2))(0) =$						
			1, and the advantages of the former are discussed.						
	Next frontier s in cleaner		A rapidly-growing 3D printing technology is innovatively	EPSRC Grand Challeng e	Midde lkoop, V; Slater,				
72.	synthesi s: 3D printed graphen	CLEANER PRODUCTIO	employed for the manufacture of a new class of heterogenous	Network, the CO2Che m for	Florea , M; Neatu,	6.395	0.864	10.1016/j .jclepro.2 018.12.2	Q1
	e- support ed CeZrLa	614 (2019)	catalysts for the conversion of CO2 into industrially relevant chemicals	Seedcorn Grant (2016); HEFCE	Danac i, S; Onyen			74	
	mixed - oxide		such as cyclic carbonates. For the	funding through	keadi, V;				

nanocat	first time, directly	the UK	Boone		
alyst	printed graphene-	Research	1 1		
for	based 3D structured	Partnersh			
CO2	nanocatalysts have	ip	B;		
utilisati	been developed	Investme	1		
on and	combining the	nt	au,		
direct	exceptional		LA;		
	properties of		Kellic		
propyle ne	graphene and active		i, S		
carbona	CeZrLa mixed-oxide		1, 5		
te		ter RPIF			
	nano particles. It constitutes a	Round 2			
product		Kound 2			
ion	significant advance				
	on previous attempts				
	at 3D printing				
	graphene inks in that				
	it does not merely				
	explore the				
	printability itself, but				
	enhances the				
	efficiency of				
	industrially relevant				
	reactions, such as				
	CO2 utilisation for				
	direct propylene				
	carbonate (PC)				
	production in the				
	absence of organic				
	solvents. In				
	comparison to the				
	starting powder, 3D				
	printed GO-				
	supported CeZeLa				
	catalysts showed				
	improved activity				
	with higher				
	conversion and no				
	noticeable change in				
	selectivity. This can				
	be attributed to the				
	spatially uniform				
	distribution of				
	nanoparticles over				
	the 2D and 3D				
	surfaces, and the				
	larger surface area				

			-						
			and pore volume of						
			the printed						
			structures. 3D						
			printed GO-						
			supported CeZeLa						
			catalysts compared						
			to unsupported 3D						
			printed samples						
			exhibited higher						
			selectivity and yield						
			owing to the great						
			number of new weak						
			acid sites appearing						
			in the supported						
			sample, as observed						
			by NH3-TPD						
			analysis. In addition,						
			the catalyst's facile						
			separation from the						
			product has the						
			capacity to massively						
			reduce materials and						
			operating costs						
			resulting in increased						
			sustainability. It						
			convincingly shows						
			the potential of these						
			printing technologies						
			in revolutionising the						
			way catalysts and						
			catalytic reactors are						
			designed in the						
			general quest for						
			clean technologies						
			and greener						
			chemistry. 2019						
			Elsevier Ltd. All						
			rights reserved.						
	Very		Plasma assisted	_	Zacha				
	large		atomic oxygen	European	raki,				
	-	APPLIED	deposition was used	UnionEu	C;			10 10 50	
	nt	PHYSICS	to grow	ropean	Tsipas	0.501	0.011	10.1063/	
73.		LETTERS,114,	polycrystalline	Union	, P;	3.521	0.866	1.509003	$ \mathbf{Q}^1 $
	tion in	112901 (2019)	ferroelectric Hf1-	(EU)	Chaito			6	
	ferroele		xZrxO2 (x = 0.5-0.7)	[780302	glou,				
	ctric		on technologically	-	S;				
			veennerogreung		, ,				

Hf1-	important (100)	3eFERR	Fragk		
xZrxO2	Germanium	0]	os, S;		
grown	substrates showing	01	Axioti		
on Ge	sharp crystalline		s, M;		
substrat	interfaces free of		Lagoy		
es by	interfacial		iannis,		
plasma	amorphous layers		A;		
assisted	and strong evidence		Negre		
atomic	for the presence of a		a, R;		
oxygen	predominately		Pintili		
depositi	orthorhombic phase.		e, L;		
on	The electrical		Dimo		
	properties, evaluated		ulas,		
	using metal-		A		
	ferroelectric-				
	semiconductor				
	(MFS) capacitors,				
	show symmetric and				
	robust ferroelectric				
	hysteresis with weak				
	or no wake-up				
	effects. The MFS				
	capacitors with x =				
	0.58 show very large				
	remanent				
	polarization up to				
	34.4 mu C/cm(2) or				
	30.6 mu C/cm(2)				
	after correction for				
	leakage and				
	parasitics, combined				
	with good endurance				
	reaching 10(5) cycles				
	at a cycling field of				
	2.3 MV/cm. The				
	results show good				
	prospects for the				
	fabrication of Ge				
	ferroelectric field				
	effect transistors				
	(FeFETs) for use in 1				
	T FeFET embedded				
	nonvolatile memory				
	cells with improved				
	endurance. (C) 2019				
	Author(s).				

74.	Efficien t glucose dehydra tion to HMF onto Nb- BEA catalyst s		The one-pot production of HMF from glucose was investigated in pure hot water and biphasic water/methyli- sobutylketone (MIBK) solvent using mesoporous Nb(0.02 and 0.05 mol%)-Beta zeolites obtained by a post synthesis methodology. The mesoporous Nb-Beta zeolites present residual framework A1-acid sites, extra- framework isolated Nb(V) and Nb2O5 pore-encapsulated clusters in which Nb(V) O-H exhibit moderate strength Bronsted acidity. After optimization, the dehydration of glucose onto the Nb- modified Beta- zeolites occurred with a selectivity of 84.3% in HMF for a glucose conversion of 97.4%. This result has been obtained in a biphasic water/ MIBK solvent and in the presence of NaCl, at 180 degrees C, after 12 h. The research focuses	UEFISC DI [PN- III-P4- ID-PCE- 2016- 0533]	Candu , N; El Ferga ni, M; Verzi u, M; Cojoc aru, B; Jurca, B; Apost ol, N; Teodo rescu, C; Parvul escu, VI; Coma n, SM	4.888	0.852	10.1016/j .cattod.2 018.08.0 04	Q1
75.	separati on and ROS generati	<i>SURFACE</i> <i>SCIENCE</i> , 470 , pp.1053-1063 (2019)	on a few key points concerning the light- driven processes taking place on TiO2		S; Anast asescu , C;		0.671	.apsusc.2 018.11.1 94	Q1

0	on on	anatase and sodium	Balint,
tı	ubular	titanates with tubular	I;
s	odium	morphology, such as	Umek,
ti		the relationship	P;
s		between the	Sluba
e	exposed	morphology and	n, M;
to	-	activity for H-2 and	Negril
S	imulat	CO2 production,	a, ČC;
e	ed solar	density of surface	Angel
li	ight	hydroxyl groups,	escu,
		ROS (center dot OH	DG;
		and center dot O-2(-	Bratan
)) production and	, V;
		photocatalytic	Rusu,
		activity, and charge	A;
		separation at the	Zahar
		interface of	escu,
		semiconducting	M
		domains and	
		enhancement of	
		activity. One key	
		point discussed is	
		whether the materials	
		with peculiar	
		morphologies (i.e.	
		tubular) are superior	
		to the conventional	
		ones. The	
		experimental	
		evidences show that	
		the main advantage	
		of the tubular	
		morphology of	
		sodium titanate is	
		given by its	
		significantly higher	
		surface area	
		compared to parental	
		anatase. FTIR and	
		XPS progressive	
		analyses evidence	
		that the density of	
		surface hydroxyl	
		groups decreases	
		with the	
		development of the	

			tubular morphology.						
			The radical trapping						
			experiments show						
			that the variation of						
			surface hydroxyl						
			density is, generally,						
			followed by						
			activities for center						
			dot OH and center						
			dot O-2(-)						
			generation, as well as						
			by the photocatalytic						
			production of H-2						
			and CO2 from						
			water/methanol						
			mixture.						
			Consequently, the						
			ROS, formed by						
			action of						
			photogenerated						
			electrons and holes						
			on adsorbed O-2 and						
			hydroxyl groups,						
			respectively, play an						
			important role in						
			determining the						
			photocatalytic						
			activity of titania-						
			based materials. The						
			other major aspect						
			revealed by this						
			research is that the						
			charge separation at the interfaces formed						
			between anatase and						
			sodium titanate						
			crystalline phases						
			has remarkable effect						
			on the activity						
			formation rates of H-						
			2 and CO2.						
	Antibac	CERAMICS	A series of seven	Romania	Popa,			10 1016/3	
	terial	INTERNATIO	alkali-free silica-	n	AČ;			10.1016/j	
76.	efficien	NAL, 45 ,	based bioactive	National	Ferna	3.45	0.454	.ceramint	Q1
	cy of	pp.4368-4380	glasses (SBG) with	Authorit	ndes,			.2018.11.	
	alkali-	(2019)	ZnO and/or SrO	y for	HR;			112	
L	1	1. <i>'</i>	1	-	1 '	1	I	1	

freeadditives (inScientificNecsubio-concentrations of 0-Researchlescu,glasses12 mol%) wereandM;incorposynthesized by melt-InnovatioLuculratingquenching, aiming ton,escu,ZnOdelineate a candidateCNCS-C;and/orformulationUEFISCCioanSrO aspossessing (i) aDI [PN-gher,therapecoefficient ofII-RU-M;uticthermal expansionTE-Dumit	
glasses12 mol%) wereandM;incorposynthesized by melt-InnovatioLuculratingquenching, aiming ton,escu,ZnOdelineate a candidateCNCS-C;and/orformulationUEFISCCioanSrO aspossessing (i) aDI [PN-gher,therapecoefficient ofII-RU-M;uticthermal expansionTE-Dumit	
incorpo rating ZnOsynthesized by melt- quenching, aiming to delineate a candidateInnovatio Lucul n,Lucul escu,ZnO and/ordelineate a candidateCNCS- C;C;SrO as therape uticpossessing (i) a coefficient ofDI [PN- Bher, II-RU-M;	
rating ZnO and/orquenching, aiming to delineate a candidaten,escu, CNCS-SrO as therape uticformulation possessing (i) a thermal expansionUEFISC DI [PN- DumitCioan Bher, DI [PN- Dumit	
ZnOdelineate a candidateCNCS-C;and/orformulationUEFISCCioanSrO aspossessing (i) aDI [PN-gher,therapecoefficient ofII-RU-M;uticthermal expansionTE-Dumit	
and/or SrO as therape uticformulation possessing (i) a coefficient of thermal expansionUEFISC DI [PN- gher, II-RU- TE-Cioan gher, M;	
SrO as therape uticpossessing (i) a coefficient of thermal expansionDI [PN- gher, II-RU- TE-gher, M; Dumit	
therape uticcoefficient of thermal expansionII-RU- TE-M; Dumit	
utic thermal expansion TE- Dumit	
agents (CTE) similar to the 2014-4- ru, V;	
one of titanium (Ti) 0180, Stuart,	
and its medical grade PN-III- BW;	
super alloys (crucial P1-1.1- Grant,	
for the future TE- DM;	
development of 2016- Ferrei	
mechanically 1501, ra,	
adherent implant- PN18- JMF;	
type SBG coatings) 110101]; Stan,	
and (ii) antibacterial CICECO GE	
efficiency, while (iii) -Aveiro	
conserving a good Institute	
cytocompatibility. of	
The SBGs powders Materials	
were multi-	
parametrically funds	
evaluated by X-ray through	
diffraction, Fourier the	
transform infrared Operatio	
and micro-Raman nal	
spectroscopy, Program	
dilatometry, me inductively coupled Competit	
plasma mass iveness	
spectrometry, Factors	
antibacterial (against (COMPE	
Staphylococcus TE 2020)	
aureus and [UID/CT]	
Escherichia coli M/50011	
strains) suspension /2013];	
inhibition and agar Portugue	
diffusion tests, and se	
human mesenchymal Foundati	
stem cells on for	
cytocompatibility Science	
assays. The results and	

			showed that the coupled incorporation of zinc and strontium ions into the parent glass composition has a combinatorial and additive benefit. In particular, the "Z6S4" formulation (mol%: SiO2-38.49, CaO-32.07, P2O5- 5.61, MgO-13.24, CaF2-0.59, ZnO-6.0, SrO-4.0) conferred strong antimicrobial activity against both types of strains, minimal cytotoxicity combined with good stem cells viability and proliferation, and a CTE (similar to 8.7 x 10(-6) x degrees C-1) matching well those of the Ti-based implant materials.	Technolo gy (FCT); Fundaca o para a Ciencia e a Tecnolog ia (FCT), Portugal [SFRH/B PD/1108 83/2015] ; Engineer ing and Physical Sciences Research Council via the Centre for Innovativ e Manufact uring in Medical Devices (MeDe Innovatio n) [EP/K02 9592/1]					
77.	ty of SiGe nanocry	<i>APPLIED</i> <i>SURFACE</i> <i>SCIENCE</i> , 469 , pp.870-878 (2019)	Photosensitive films based on finely dispersed semiconductor nanocrystals (NCs) in dielectric films have great potential for sensor applications. Here we report on preparation and characterization of	M- ERA.NE T project PhotoNa noP UEFISC DI [33/2016]; PCE project UEFISC DI	escu, A; Gudm undss	5.155	0.671	10.1016/j .apsusc.2 018.11.0 61	Q1

anneali	photosensitive Si1-	[122/201	es,		
ng	xGex NCs	7];	GA;		
	sandwiched between	Romania			
	SiO2 matrix. A	n	ache,		
	radio-frequency	Ministry	I;		
	magnetron sputtering	of	Logof		
	was applied to obtain				
	a multilayer-	and	Teodo		
	structures (MLs) by	Innovatio	rescu,		
	depositing	n through	VS;		
	SiO2/SiGe/SiO2	NIMP	Ciurea		
	films on Si (0 0 1)	Core	, ML;		
	substrate. The Si1-	Program	Svava		
	xGex NCs were	[PN16-	rsson,		
	formed by a post-	480102];	1 1		
	deposition annealing	Technolo			
	at 100-700 degrees C				
	for 1-5 min. The	Develop			
	effect of annealing	ment			
	temperature and time				
	on MLs morphology	the			
	and NCs size and	Icelandic			
	density was studied	Centre			
	using grazing	for			
	incidence X-ray	Research			
	diffraction,	[159006-			
	transmission electron	0011]			
	microscopy, X-ray photoelectron				
	spectroscopy,				
	energy-dispersive X-				
	ray spectroscopy and				
	measurements of				
	spectral distribution				
	of photocurrent. It is				
	demonstrated how				
	the photoconductive				
	properties of the				
	MLs can be				
	enhanced and				
	tailored by				
	controlling the NCs				
	formation conditions				
	and the presence of				
	stress field in MLs				
	and defects acting as				

			traps and recombination centers. All these features can be adjusted/controlled by altering the annealing conditions (temperature and time). The MLs photosensitivity was increased of more than an order of magnitude by the annealing process. A mechanism, where a competition between crystallization process (NCs formation and evolution i.e. size and shapes) and stress field appearance determines the peak position in the photocurrent spectra,						
78.	Do topolog y and ferroma gnetism coopera te at the EuS/Bi 2Se3 interfac e?	<i>PHYSICAL</i> <i>REVIEW</i> <i>R</i> 99 064423	magnetic properties of interfaces between	Foundati on (SNF)Sw iss National Science Foundati on (SNSF) [200021_ 165910]; NSFNati onal	I; Proks cha, T;	3.736	1.089	10.1103/ PhysRev B.99.064 423	Q1

			which extend several	1-	A;				
			nm into the adjacent	1700137]	0				
			layer and cause a	; Office	, CZ;				
			complete		Mood				
			depolarization of the	Research	era,				
			muons. However, in	(ONR)Of	JS;				
			both Bi(2)Se(3) and	fice of	Stroco				
			titanium we measure	Naval	v,				
			similar local	Research					
			magnetic fields,	[N00014	Salma				
			implying that their	-16-1-	n, Z				
			origin is mostly	2657];					
			independent of the	Science					
			topological	and					
			properties of the	Technolo					
			interface electronic	gy					
			states. In addition,	Center					
			we use resonant soft	for					
			x-ray angle resolved	Integrate					
			photoemission	d					
			spectroscopy (SX-	Quantum					
			ARPES) to probe the	-					
			electronic band	under					
			structure at the	NSF					
			interface between	Grant					
			EuS and Bi2Se3. By	[DMR-					
			tuning the photon	1231319]					
			energy to the Eu	; Alfred					
			antiresonance at the	P. Sloan					
			1 0	Research					
			are able to detect the	Fellowsh					
			Bi2Se3 conduction	ipAlfred					
			band, through a	P. Sloan					
			protective Al2O3	Foundati					
			capping layer and the						
			EuS layer. Moreover,						
			we observe a	Investiga					
			signature of an	tor					
			interface-induced	Program					
			modification of the	Award					
			buried Bi2Se3 wave	[W911N					
			functions and/or the	F181019					
			presence of interface	8]					
			states.						
	Energy-	SURFACE &	Bipolar Pulse High	Euratom	Velicu			10.1016/j	
79.		COATINGS	Power Impulse	research	, IL;	3.192	0.512	.surfcoat.	Q1
	emanee	Common		research	,,			.surreoat.	

d	TECHNOLOG	Magnetron	and	Ianos,		2018.12.	
depositi	<i>Y</i> , 359 , pp.97-	Sputtering (BP-	training	GT;		079	
on of	107 (2019)	HiPIMS) was	program	Poros			
copper		investigated and used		nicu,			
thin		in this work to	2018	C;			
films		control the ion	[633053]	Mihail			
by		bombardment	; PRO-	a, I;			
bipolar		process of growing	DD	Burdu			
high		thin films and to	(POS-	cea, I;			
power		improve their	CCE)	Velea,			
impulse		structure and	[0.2.2.1,	A;			
magnetr		properties. Energy-	123,	Criste			
on		resolving mass	SMIS	a, D;			
sputteri		spectroscopy was	2637,	Munte			
ng		used to investigate	11/2009]	anu,			
		the effect of reverse	-	D;			
		target voltage on the		Tiron,			
		ion energies and		V			
		fluxes during BP-					
		HiPIMS of a high-					
		purity copper target,					
		in argon gas. It was					
		found that the					
		reverse target voltage					
		provides a wide					
		range of ion energies					
		and fluxes incident					
		to the growing film,					
		which, in turn,					
		produce a wide					
		variety of effects					
		during the deposition					
		process, improving					
		the adhesion strength					
		and influencing both					
		surface and bulk					
		properties. Fast					
		ICCD imaging was					
		used to investigate					
		both HiPIMS and					
		BP-HiPIMS plasma					
		dynamics. The					
		temporal and spatial					
		distributions of					
		plasma potential					
		measurements were					

performed in order to
explain the
mechanisms for
accelerating the ions.
The topological,
structural and
mechanical
properties of the
deposited coatings
were investigated
using atomic force
microscopy (AFM),
X-ray diffraction
(XRD), Rutherford
backscattering
spectrometry (RBS),
thermal desorption
spectroscopy (TDS),
scanning electron
microscopy (SEM),
nanoindentation and
scratch tests. The
obtained results
indicate an energy-
enhanced deposition
process during BP-
HiPIMS, the
deposited films being
characterized by
smooth surfaces,
dense microstructure,
small inert gas
inclusions, high
elastic strain to
failure, scratch
resistance and good
adhesion to the
substrate. These
improvements in the
films' structure and
properties may be
attributed to the
intense and energetic
ion bombardment
taking place during
the deposition

		process. During BP- HiPIMS operation, there is no net increase in the deposition rate as compared to the monopolar regime due to the re- sputtering process. (Y0.87- xLa0.1Zr0.03Ybx)(2)O-3 (x = 0.02, 0.04, 0.05) transparent						
80.	Highly transpar ent Yb:Y2 O3 ceramic s obtaine d by solid- state reaction and combin ed sinterin g procedu res	sintering additives. A method based on two-step intermediate sintering in air	y for Scientific Research and Innovatio	Stanci u, G; Gheor ghe, L; Voicu, F; Hau, S; Gheor ghe, C; Croito ru, G; Encul escu, M; Yavet skiy, RP	3.45	0.454	10.1016/j .ceramint .2018.10. 224	

			dispersed scattering volumes in the ceramic bodies. Transmittance of 78.8% was measured for the 2.0 at% Yb:Y2O3 ceramic sample at the wavelength of 1100 nm. The spectroscopic properties of Yb:Y2O3 ceramics were investigated at room temperature. The obtained results show that the absorption cross- section at 978 nm is in the range of 2.08 x 10(-20) to 2.36 x 10(-20) cm(2), whereas the emission						
81.	Carbon yl	<i>CHEMISTRY</i> ,9 1, pp.1920- 1927 (2019)	cross-section at 1032 nm is similar to 1.0 x 10(-20) cm(2). The interaction of proteins with free radicals leads, among other types of damages, to the production of stable carbonyl groups, which can be used as a quantification of oxidative stress at proteins level. The aim of this study was the development of an electrochemical sensor for the detection of carbonyl groups in proteins oxidized by reactive oxygen species. Its working principle is	of Research and Innovatio n through Operatio nal Program me Competit iveness	Enach e, TA; Matei, E; Dicule scu, VC	6.35	1.348	10.1021/ acs.analc hem.8b0 3969	Q1

based on the redox
properties of
dinitrophenylhydrazi
ne (DNPH). BSA
was used as a model
protein and its
oxidation achieved
through Fenton
reactions. Using
differential pulse
voltammetry at
glassy carbon
electrode, the
electrochemical
behavior of DNPH
and of the native and
oxidized BSA was
investigated in
solution. It has been
shown that the
hydrazine moiety of
the DNPH is the
electroactive center
and is responsible for
carbonyl
complexation.
Special attention was
paid to the
immobilization of
the DNPH in order to
retain its redox
properties, and this
was achieved on a
mixed 4-
styrenesulfonic acid-
nafion matrix. The
sensor's surface
characterization and
the detection of
carbonyl groups in
oxidized protein
were performed by
voltammetry,
Fourier-transformed
infrared
spectroscopy and

			scanning electron microscopy while the voltammetric results were confirmed by surface plasmon resonance measurements. It has been shown that upon interaction with carbonyl groups of the oxidized protein, the oxidation peak of the hydrazine moiety of DNPH decreases as a function of incubation time and protein concentration. The sensor sensitivity was 0.015 nmol carbonyl per mg of oxidized protein and detection limits of 50 mu g oxidized BSA and 0.75 pmol carbonyls.						
82.	Rhodiu m- Catalyz ed Annulat ion of ortho- Alkenyl Anilide s with Alkyne s: Formati on of Unexpe cted Naphth alene Adduct s	ANGEWANDT E CHEMIE- INTERNATIO NAL EDITION, 58 , pp.1700-1704 (2019)	o-Alkenyl N- triflylanilides underwent rhodium(III)- catalyzed oxidative annulations with alkynes to produce different types of naphthylamides in a process which involves the cleavage of two C-H bonds. Remarkably, besides formal dehydrogenative (4C+2C) cycloadducts, the reaction also produces variable amounts of isomeric	Conseller ia de Cultura, Educacio n e Ordenaci on Universit aria [ED431C 2017119- 041, 2015- CP082]; Spanish grants [SAF201 6-76689- R, CTQ201	Seoan e, A; Coma nescu, C; Casan ova, N; Garcia - Fandi no, R; Diz, X; Masca renas, JL; Gulias , M	12.257	3.243	10.1002/ anie.201 811747	Q1

1					1	
		naphthylamides,	6-77047-			
		whose formation	P];			
		requires a formal	Conseller			
		migration of the	ia de			
		alkenyl moiety from	Cultura,			
		the ortho to the meta	Educacio			
		position of the	n e			
		anilide. The	Ordenaci			
		annulation reaction	on			
		can be efficiently	Universit			
		carried out in the	aria			
		absence of external	(Centro			
			· ·			
		oxidants, such as $C_{\rm P}(\Omega \Delta_{\rm P})(2)$	Singular			
		Cu(OAc)(2).	de Investige			
			Investiga			
			cion de			
			Galicia			
			accredita			
			tion)			
			[ED431			
			G/09];			
			European			
			Regional			
			Develop			
			ment			
			Fund			
			(ERDF)E			
			uropean			
			Union			
			(EU);			
			European			
			Research			
			Council			
			(Advanc			
			ed Cront)Eu			
			Grant)Eu			
			ropean			
			Research			
			Council			
			(ERC)			
			[340055]			
			; Spanish			
			Governm			
			ent			
			MINEC			
			O [RYC-			
 1	1					

	Composite thin coatings of	RYC- 2016- 20335]; orfeo- cinqa network [CTQ201 6-81797- REDC] Romania				
Laser Process ed Antimic robial Nanoco mposite Based on Polyani line Grafted Lignin Loaded with Gentam icin- Functio nalized Magnet ite	conductive polymer (polyaniline grafted lignin, PANI-LIG) embedded with aminoglycoside Gentamicin sulfate (GS) or magnetite nanoparticles loaded with GS (Fe3O4@GS) were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. The aim was to obtain such	DIO;[63PCCGrumDI (PN-GrumIII-P1-, V;1.2-Socol,PCCDI2M;017-Zgura,0728),I;PN-III-Florica, C;POpes2016-cu,0884];RC;NationalSavu,AuthoritD;y forHolbaandn,AmountCristeframe ofR;	3.164	0.592	10.3390/ polym11 020283	Q1

reported, and the	
deposited thin	
coatings exhibited an	
appropriate	
nanostructured	
surface, suitable for	
bone-related	
applications. The	
laser processing of	
PANI-LIG materials	
had a meaningful	
impact on the	
composites'	
wettability, since the	
contact angle values	
corresponding to the	
composite laser	
processed materials	
decreased in	
comparison with	
pristine conductive	
polymer coatings,	
indicating more	
hydrophilic surfaces.	
The corrosion	
resistant structures	
exhibited significant	
antimicrobial activity	
against Escherichia	
coli, Staphylococcus	
aureus, and Candida	
albicans strains. In	
vitro cytotoxicity	
studies demonstrated	
that the PANI-LIG-	
modified titanium	
substrates can allow	
growth of bone-like	
cells. These results	
encourage further	
assessment of this	
type of biomaterial	
for their application	
in controlled drug	
release at	
release at	

Growth of SrTiO3 Single Crystals with a Diamet er of about 30 mm by the Verneui I MethodCRYSTAL GROWTH & DESIGN,19, pp.604-612 (2019)	the length of the region with bubbles D is zero and the effective length EL (i.e., the crystal length of commercial value) is maximized are for the amount of SrCO3 additive of similar to 3 wt % and for H-2 outer flow rate of similar to 35 L/min. These two	ScienceandTTechnoloogy, JapanE(MEXT)KJapanASocietywfor theVPromotio,n ofNScienceGcrants-in-PAid forNScientificSResearchM(KAKENIoHI)e[15K059R97,K15K0644e9];AMEN-B	Endo, X; Arisa va, S; /laicu AM; Vedel vu, L; Preda, V; Secu, M; ordan sscu, X; Kuncs	0.762	10.1021/ acs.cgd.8 b01004	Q1
--	---	---	--	-------	---------------------------------	----

		viewpoints, and they are compared with a commercial substrate and with crystals reported in the literature. This work opens the possibility for the industrial growth of large SrTiO3 single crystals and commercialization of large area substrates. The electro- oxidation mechanism of free methionine	Ministry					
85. spectro metry investig	JOURNAL OF ELECTROANA LYTICAL CHEMISTRY, 8 34 , pp.124-129 (2019)	each involving the	n Ministry	Dicule scu, VC; Enach e, TA	3.218	0.488	10.1016/j .jelechem .2018.12. 058	Q1

		molecule leading to production of a dimer cationic radical. The dehydromethionine hydrolysis gave methionine sulfoxide as final oxidation product, whereas a future oxidation of methionine dimer cation radical, i.e. the second electro- oxidation step, results in a methionine dimer dication. Moreover, at high acid media, the protonated amino group influence the electro-oxidation process to take place via proton transfer mechanism. The presence of methionine sulfoxide and of the dimer	Operatio nal Program me Competit iveness [NANO BIOSUR F-SMIS 103528]					
		cationic radical as oxidation products of methionine was confirmed by mass spectroscopy.						
c quasi-	<i>ORGANIC</i> <i>ELECTRONIC</i> <i>S</i> , 65 , pp.412- 418 (2019)	Topological and thermal disorder complicate the mobility characterization in poly(3,4- ethylenedioxythioph ene) systems and presently leaves the exact transport mechanisms not fully understood. Here we show that ac-Hall measured by lock-in	Science Foundati onAustri an	Stadle r, P; Leona t, LN; Meno n, R; Cosku n, R; Van Frank, S; Rankl, C; Schar	3.495	0.573	10.1016/j .orgel.20 18.12.00 1	Q1

	e-		amplifier is able to	I3822-	ber,				
	dioxyth		resolve the Hall	N37];	MC				
	iophene		voltage in	province					
)		semimetallic	of Upper					
	/		polymers between	Austria					
			room temperature						
			and 32 K. These						
			results are evaluated						
			using an organic						
			random phase model.						
			This accounts for the						
			role of tail states and,						
			particularly, for						
			thermal disorder of						
			molecular						
			semiconductors. We						
			report band						
			mobilities up to 3.7						
			cm(2) V-1 s(-1) in						
			semimetallic						
			polymers occurring						
			in delocalized bands						
			that originate from						
			significant electron						
			coherence across the						
			polymer chains.						
	Bimoda		In the present study	Romania					
	1		we report on the	n	Soma				
	mesopo			National	cescu,				
	rous		and stability of the	Authorit	S;				
	NiO/Ce			y for	Cioate				
	O2-		NiO/CeO2-delta-	Scientific					
	delta-		YSZ anodes for IT-	Research					
		APPLIED	SOFCs applications.	through	anu,				
	with	CATALYSIS B-		the	P;			10.1016/j	
87.		ENVIRONME		Partnersh		14.229	1.918	.apcatb.2	Q1
		NTAL, 241 ,	concentration of C3+	-	on-		_	018.09.0	
		pp.393-406	ions stably retained	priority	Moren			65	
	toleranc	(2019)	, ,	S&T	o, JM;				
	e in		proved to be efficient		Ghica,				
	catalyti		-	Program	C;				
	c partial		partial oxidation of	(PNII), MEN	Neatu,				
	oxidatio n of			MEN- UEFISC	F; Florea				
	n oi methan		temperature range 600-800 degrees C.	DI	, M				
			The excellent carbon	[26/2012]	, IVI				
	e-		The excenent carbon	[20/2012					

Pote	entia	tolerance was proved	1:	
1 IT-		-	Romania	
SOF		XPS analysis, which	n	
anoc		monitored the	National	
unoe		amount of carbon	Authorit	
		before and after	y for	
		catalytic partial	Scientific	
		oxidation of methane		
		(CPOM) tests. The	and	
		mesoporous anodes	Innovatio	
		templated by	n, CNCS	
		hexadecyltrimethyla	UEFISC	
		mmonium bromide	DI within	
		(CTAB) and	PNCDI	
		· /	III [PN-	
		(TPA) were obtained	-	
		using a hydrothermal		
			2016-	
		effect of Ni and Ce	0692,	
		incorporation on the	PN-III-	
		yttria stabilized	P4-ID-	
	-	zirconia (YSZ)	PCE-	
		structure, texture,	2016-	
			0529];	
		surface chemistry	CNCS/C	
		was discussed and	CCDI-	
		correlated with	UEFISC	
		catalytic and	DI within	
		electrochemical	PNCDI	
	1	behavior. The	III [PN-	
		exhaustive	III-P2-	
		characterization of	2.1-PED-	
	t	the bulk and surface	2016-	
		properties of the	1429];	
		catalysts have been	Romania	
		accomplished by	n	
	1	means of	Ministry	
		complementary	of	
	1	methods: XRD, SEM	Research	
	/	EDX / HR TEM,	and	
		TGA / TPR, XPS.	Innovatio	
		The electrochemical	n [PN18-	
		and catalytic	110101]	
		performance were		
		improved when the		
		surface contains		

			more reduced ceria and NiO was formed as secondary phase. These features lead to a large number of vacancies and consequently a better oxygen migration, which facilitate the carbon removal.						
lig inc ph tal act 88. of Tid apl ox nan mf	duced notoca lytic tivity O2/gr	<i>CATALYSIS</i> <i>TODAY</i> , 321 , pp.81-86 (2019)	substrates surface to ensure the adherence	n of the Ecuadori an Governm ent (SENES CYT); Executiv e Unit for Financin g Higher Educatio n, Research ,	Datcu, A; Mend oza, ML; del Pino, AP; Logof atu, C; Lucul escu, C; Gyorg y, E	4.888	0.852	10.1016/j .cattod.2 018.02.0 26	Q1

			TiO2 NPs in the	Educatio					
			composite materials.	n and					
			Photodegradation	Scientific					
			activity under UV-	Research					
			visible light	[PN-III-					
			irradiation was	P2-2.1-					
			studied by measuring						
			the concentration	2016-					
			changes in time of	1043];					
			organic methylene	Nucleus					
			blue dye in aqueous	program					
			solutions as well as	at					
				NILPRP					
			demand for real	[4N/9.03.					
			wastewater samples.	2016 (16					
			The obtained results	47 01					
			revealed that the	02)]					
			photocatalytic	~_/]					
			properties of the spin						
			coated composites						
			are determined by						
			the graphene oxide						
			concentration. The						
			effect of the						
			spontaneous						
			reduction of GO in						
			the presence of TiO2						
			NPs on the						
			photocatalytic						
			activity of the TiO2-						
			GO/PS composites is						
			discussed in detail.						
					D				$\left - \right $
	Theoret		The results of	ERA-	Rusev				
	ical and		experimental and	NET	ich,				
	Experi		theoretical ab initio	HarvEnP	LL;				
	mental		study of structural	iez	Zvejni				
	Study	JOURNAL OF	and piezoelectric	project;	eks,				
	of	PHYSICAL	properties of	Latvian	G;			10.1021/	
89.	(Ba,Sr)	CHEMISTRY	(Ba,Sr)TiO3	State	Koto	4.309	1.017	acs.jpcc.	Q1
	TiO3	<i>C</i> , 123 ,	perovskite solid	Educatio	min,			8b09750	
		pp.2031-2036	solutions are	n	EA;				
	ite	(2019)	discussed and	Develop	Krzm				
	Solid		compared.	ment	anc,				
	Solutio		Experimentally,	Agency;	MM;				
	ns and		plate-like	Slovenia	Mede				
	BaTiO3		(Ba,Sr)TiO3		n, A;				

/SrTiO3	particles were	Ministry	Kunej,		
Heteros	synthesized by the	of Higher			
tructure	topochemical	Educatio	1 1		
s	conversion in the	n,	, ID		
	molten salt from	Science	,		
	Bi4Ti3O12 template	and			
	plates. All	Technolo			
	dimensions (side	gy;			
	length approximate	Romania			
	to 1 mu m, thickness	n			
	approximate to 200-	National			
	400 nm) were well	Authorit			
	above the critical	y for			
	size necessary for	Scientific			
	observation of piezo-	Research			
	and ferroelectricity.	and			
	The first-principles	Innovatio			
	computations of the	n,			
	structural and	CCCDI-			
	electromechanical	UEFISC			
	properties of solid	DI within			
	solutions were	PNCDI			
	performed with the	III-M-			
	CRYSTAL14	ERA			
	computer code	NET			
	within the linear	Program			
	combination of	[49/2016			
	atomic orbitals]			
	approximation, using				
	three advanced				
	hybrid functionals of				
	density functional				
	theory. Different				
	chemical				
	compositions are				
	considered for the				
	ferroelectric and				
	paraelectric phases.				
	The calculated				
	structural properties				
	of solid solutions in				
	tetragonal and cubic				
	phases are in very				
	good agreement with				
	experimental data.				
	Experimentally				

			obtained and calculated band gaps are compared for cubic SrTiO3 and tetragonal BaTiO3. BaTiO3/SrTiO3 heterostructures were considered theoretically for different chemical compositions. The calculated piezoelectric properties of solid solutions and heterostructures in the ferroelectric phase are compared. It is predicted that both solid solutions and heterostructures improve the piezoelectric properties of bulk BaTiO3, but solid solutions are more preferable for equal						
90.	Comple x exchan ge couplin g mechan isms in SRO/B FO/Fe heterost ructures	<i>JOURNAL OF ALLOYS AND COMPOUNDS</i> , 773 , pp.338- 345 (2019)	Sr concentrations. Temperature dependent interfacial coupling mechanisms in SRO/BFO/Fe layered structures were investigated. The BFO/Fe heterostructures were prepared by PLD and sputtering, respectively, on the STO(0 0 1) substrate with a 20 nm SRO buffer layer. An annealing treatment in external magnetic field was further	$n PN_{-}$	leasa, SG; Schint eie, G; Hrib,	4.175	0.601	10.1016/j .jallcom. 2018.09. 208	Q1

applied. Complex
characterizations
with X-ray
diffraction, atomic
force microscopy,
Transmission
Electron
Microscopy,
Mossbauer
spectroscopy,
magneto-optic Kerr
effect and SQUID
magnetometry were
performed. Before
annealing, the films
show good
crystallization and
epitaxy of the SRO
and BFO layers with
smooth interfaces.
Two coupling
mechanisms of the
ferromagnetic layers
(top Fe and bottom
SRO, respectively)
to the epitaxial BFO
film with mainly
antiferromagnetic
structure were
evidenced in the as
deposited samples at
low temperatures.
Negative exchange
bias fields of up to
67(10) Oe and 37(5)
Oe at low
temperatures were
observed for the two
ferromagnetic
components,
respectively,
depending on the
thickness of the Fe
layer. The field
annealing treatments
induce a specific

			morphology and						
			magnetic spin						
			structure at both						
			interfaces of the						
			BFO spacer layer,						
			giving rise to a long						
			range magnetostatic						
			coupling between the						
			two ferromagnetic						
			films, in addition to						
			the interfacial						
			couplings. Moreover,						
			the experimentally						
			evidenced Fe clusters						
			penetrating the						
			BFO/Fe interface						
			toward the BFO						
			layer give support						
			for this interaction.						
			As an additional						
			consequence, a considerable						
			enhancement of both						
			uniaxial and						
			unidirectional						
			anisotropies as well						
			as an increased						
			blocking temperature						
			of exchange bias						
			were obtained. The						
			involved exchange						
			coupling						
			mechanisms were						
			discussed in detail.						
			(C) 2018 Elsevier						
			B.V. All rights						
			reserved.						
	Pd-Cu		The present work	Executiv	Bradu				
	catalyst		proposes the	e Agency	· · ·				
		APPLIED	simultaneous	for	Capat,				
			removal of these	Higher	Capat, C;			10.1016/j	
91.	ed on		classes of pollutants	Educatio		4.63	0.77	.apcata.2	Q1
/1.	anion	, pp.120-129	by a catalytic	n,	F;	1.05	5.77	018.11.0	עי
		(2019)	hydrotreatment	Research	1 '			02	
	ge resin	(2017)	processes. For this	incocal cil	a, L;				
	for the		purpose, bimetallic	, Develop	a, L, Olaru,				
			purpose, uniterative	Develop	Jaiu,				

simulta	Pd-Cu catalysts (with	ment and	EA·		
neous	mass ratio Pd:Cu of	Innovatio			
catalyti	4:1) supported on	n	G;		
C	macroporous strong		Morin		
reductio	base anion resin	of	-Crini,		
n of					
	were prepared by	Romania	· ·		
nitrate	different methods.	(UEFISC			
ions	The catalysts were	DI)	rd, E;		
and	characterized (by	under the			
reductiv	XRD, SEMEDX,	PNII	I;		
e	XPS, AAS and H-2		Zgura,		
dehalog	chemisorption) and	-	I;		
enation	tested in a	2]	Munte		
of	continuous flow		anu, C		
organoc	system. The selected				
hlorinat	catalyst preparation				
ed	protocol consists in a				
pollutan	two-step method,				
ts from	which implies the				
water	deposition of				
	palladium by ion				
	exchange and the				
	subsequent				
	deposition of copper				
	by controlled				
	reaction on the				
	surface of the pre-				
	reduced palladium.				
	The effectiveness of				
	the catalyst in the				
	simultaneous				
	reduction of nitrate				
	and				
	hydrodechlorination				
	of 4-chlorophenol				
	was demonstrated.				
	By adjusting the				
	initial pH and the				
	flow rate of the				
	aqueous solution,				
	nearly complete				
	hydrodechlorination				
	of 4-chlorophenol				
	can occur together				
	with selective nitrate				
	reduction at a				

	conversion of 95% and a selectivity to N-2 of 92% (this value contains the contribution of all gaseous products, including the eventually formed NOx). The bimetallic catalyst was found to remains relatively stable after 100 h of test time. The properties of ferroelectric materials, which	Electroni c Compon				
92. Unveili ng the double- well energy landsca pe in a ferroele ctric layer		entHoffmSystemsann,forM;EuropeanFenglip JointFPG;UndertakHerziingg, M;[692519]MittmEuropeanMax,UnionEuMax,UnionEuSchro(EU);eder,EFREU;fund ofNegrea, R;Pintillicommisse, L;State ofSaxony(GermanMikoly); CoreProgramof NIMPMikolanMinistry	43.07	22.40 4	10.1038/ s41586- 018- 0854-z	Q1

	nolonization anama-	for		
	polarization-energy			
	landscape, which	Research		
	was thought for more			
	than 70 years to be	Innovatio		
	inaccessible to	n)		
	experiments(18).			
	Here we report			
	electrical			
	measurements of the			
	intrinsic double-well			
	energy landscape in			
	a thin layer of			
	ferroelectric			
	Hf0.5Zr0.5O2. To			
	achieve this, we			
	integrated the			
	ferroelectric into a			
	heterostructure			
	capacitor with a			
	second dielectric			
	layer to prevent			
	immediate screening			
	of polarization			
	charges during			
	switching. These			
	results show that			
	negative capacitance			
	has its origin in the			
	energy barrier in a			
	double-well			
	landscape.			
	Furthermore, we			
	demonstrate that			
	ferroelectric negative			
	capacitance can be			
	fast and hysteresis-			
	free, which is			
	important for			
	prospective			
	applications(19). In			
	addition, the			
	Hf0.5Zr0.5O2 used			
	in this work is			
	currently the most			
	industry-relevant			
	ferroelectric			
	_			

Akerma nite- based coating s grown by pulsed laser 93. depositi on for metallic implant s employ ed in orthopa edics SURFACE & COATINGS TECHNOLOG Y,357, pp.1015-1026 (2019)	selected within SiO2-P2O5-CaO- MgO-ZnO-CaF2 system, while their processing has gone through two stages: target preparation via a wet chemistry approach and films deposition through a physical deposition	Universit y Busui POLITE oc, C; HNICA Const of antino Buchares iu, I; t [UPB- Miu, GEX201 D; 7, Enach 76/25.09. e, C; 2017, Iordao CH 38- he, F; 17-06] Jinga, SI	3.192	0.512	10.1016/j .surfcoat. 2018.11. 008	Q1
--	--	--	-------	-------	--	----

			dispersive X-ray spectroscopy and selected area electron diffraction. In vitro investigation techniques were employed for the bioactivity and biocompatibility assessment. The results indicated the growth of nanostructured akermanite-based thin films with an excellent bioactivity and a good effect on stem-type cells, which validates the suitability of such structures for medical implant applications.					
94.	and polyme r films in the in vivo	JOURNAL OF MATERIALS RESEARCH AND TECHNOLOG Y-JMR&T, 8 , pp.914-922 (2019)	Plates of NiTi chemically etched, electro-polished, and sol gel coated with XO2 (X =Ti, Si, Zr), or coated with oxides and dip-coated polymers of Dextro- Levo-lactide-co- glycolide (DL-PLG, 0.4 mu m thickness), Dextro-Levo-lactic acid (DL-PLA, 1.3 mu m) or poly methyl methacrylate polymer (PMMA, 1.7 mu m) were obtained. Smooth and uniform NiTi surfaces without significant pitting, as revealed by AFM, were prepared for	Authorit y for	, D;	Not Availa ble	10.1016/j .jmrt.201 8.06.015	

chemical etching of	T II -			
120 s in	BIOMB]			
HF:HNO3:H2O =	DIOMD]			
1:5:4, followed by				
electropolishing 120				
s in				
H2SO4:CH3OH:H2				
O = 1:4:5 electrolyte				
and using a potential				
of 9 V. Dip-coated				
layer of PMMA has				
shown cracks and				
large pores and was				
eliminated from				
further experiments.				
Samples of pristine				
and coated NiTi				
were in vivo				
implanted into				
rabbits and extracted				
after 10 and 60 days.				
Clinically, all				
implants are				
biocompatible; all				
rabbits survived and				
a recovery process				
was observed for all				
cases. NiTi covered				
with SiO2, DL-PLG				
and SiO2/DL-PLG				
have shown the best				
healing evolution.				
For 10 and 60 days				
•				
good recovery was found also for NiTi				
coated with TiO2.				
Coatings of ZrO2				
and ZrO2/DL-PLG				
have shown the				
poorest results. The				
oxide coating and the				
roughness R-ZJIS				
that contains				
information on the				
'deep' large areas in				
the coatings show				

		the strongest influence on the healing processes. Work indicates the possibility of space- and time- scale controlled variation of the functional properties. (C) 2018 Brazilian Metallurgical, Materials and Mining Association. Published by Elsevier Editora Ltda.						
Additio n of carbon fibers into B4C infiltrat ed with molten silicon	<i>CERAMICS</i> <i>INTERNATIO</i> <i>NAL</i> , 45 , pp.168-174 (2019)	Boron carbide added with 0-20 wt% carbon fibers was subject to Si infiltration. Samples mainly consist of B13C2, beta-SiC and unreacted Si. Some amount of SiB6 and alpha-SiC was also detected, while formation of B- 12(B,C,Si)(3) phase was suppressed due to short infiltration time. The carbon fibers react with Si and result in formation of a composite core-shell fiber with SiC-shell and C-core. Theoretical estimations suggest that these composite fibers have a strong influence on the enhancement of the bending strength. Although apparently	Ukraine [0117U0 06427, 0117U00 4301]; State Fund for Fundame ntal Research [F75/155 -2018];	mol, I; Bolbu t, V; Kruge r, M; Badic a, P;	3.45	0.454	10.1016/j .ceramint .2018.09. 148	

	Structur al, Compo	data showing an increase of bending strength up to 510 +/- 27 MPa in the sample with 10 wt% carbon fiber, the implications of phase changes with the carbon fiber amount has to be carefully considered. At higher amounts of carbon fibers, bending strength decreases. Reduced activation ferritic and martensitic steel like EUROFER (9Cr- 1W) are considered as potential structural		Lungu , M; Poros nicu, I; Dinca,			
96.	sitional, and Mechan ical Charact erizatio n of WxCry	materials for the first wall of the future next-generation DEMOnstration Power Station (DEMO) fusion reactor and as a reference material for the International Thermonuclear Experimental Reactor (ITER) test blanket module. The primary motivation of this work is to study the re- deposition of the main constituent materials of EUROFER, namely tungsten (W), iron (Fe), and chromium (Cr), in a DEMO	Romania n National Authorit y for Scientific Research -ANCS [LAPLA S VI, 16N/201 9]	P; Velea, A; Baias u, F; Butoi, B; Pompi lian, OG; Staicu , C; Const antina, PA; Poros nicu, C; Lungu , C; Tisean u, I	0.608	10.3390/ ma12244 072	Q2

type reactor by
producing and
analyzing complex
WxCryFe1-x-y
layers. The
composite layers
were produced in
laboratory using the thermionic vacuum
arc (TVA) method,
and the morphology,
crystalline structure,
elemental
composition, and
mechanical
properties were
studied using
scanning electron
microscopy (SEM),
X-ray diffraction
(XRD), micro-X-ray
fluorescence (micro-
XRF), and glow
discharge optical
emission
spectrometry
(GDOES), as well as
nanoindentation and
tribology
measurements. The
results show that the
layer morphology is
textured and is
highly dependent on
sample positioning
during the deposition
process. The
formation of
polycrystalline
WxCryFe1-x-y was
observed for all
samples with the
exception of the
sample positioned
closer to Fe anode
during deposition.

			The crystalline grain size dimension varied between 10 and 20 nm. The composition and thickness of the layers were strongly influenced by the in- situ coating position, and the elemental depth profiles show a non-uniform distribution of Fe and Cr in the layers. The highest hardness was measured for the sample positioned near the Cr anode, 6.84 GPa, and the lowest was 4.84 GPa, measured for the sample positioned near the W anode. The tribology measurements showed an abrasive sliding wear behavior for most of the samples with a reduction of the friction coefficient with the increase of						
	The		the normal load. The bio	UEFISC	Groza,				
97.	g Radiati on on	<i>POLYMER ENGINEERIN G AND SCIENCE</i> , 59 , pp.2406-2412 (2019)	hydroxyapatite (HAp) was used from a long time in different medical and environmental applications. The HAp layers with a uniform surface were used for various medical applications such as orthopedic	2017- 0629, 43PCCD	A; Iconar u, SL; Jiga, G; Chapo n, P; Gaias chi, S; Verga, N;	1.92	0.293	10.1002/ pen.2524 7	Q2

iloxane	and dental metal	0134,	Beura		
		23PCCD			
Layers	implants. In this		n, M;		
	work, we reported on		Proda		
	the influence of X-	PN19150	1 1		
	ray radiation on the	101/2019	1 · · · 1		
	structural and]	Matei,		
	morphological		M;		
	properties of		Marin		
	composite layers		escu,		
	based on HAp and		SA;		
	polydimethylsiloxan		Trusc		
	e (PDMS) deposited		a, R;		
	on titanium		Predoi		
	substrates. The		, D		
	HAp:PDMS layers				
	were investigated by				
	different				
	complementary				
	methods such as				
	scanning electron				
	microscopy (SEM),				
	Fourier transform				
	infrared				
	spectroscopy (FTIR).				
	and glow discharge				
	optical emission				
	spectrometry				
	(GDOES). FTIR				
	spectral analysis				
	showed that the				
	molecular structure				
	of the coatings was				
	not changed after				
	their irradiation even				
	though, the depth				
	profile analysis				
	performed by				
	GDOES indicated a				
	depletion of Ca and				
	P elements from the				
	HAp:PDMS				
	irradiated samples.				
	By SEM, we showed				
	that the				
	morphological				
	features of the				

			coatings were also						
			changed, as the						
			irradiated layers are						
			delaminated. The						
			biological assays						
			confirmed that the						
			antibacterial activity						
			of HAp:PDMS						
			composite layers						
			increased after						
			irradiation. The						
			results obtained in						
			this study						
			highlighted that the						
			biological properties						
			of HAp:PDMS						
			layers could be influenced by						
			irradiation. (C) 2019						
			Society of Plastics						
			Engineers.						
			In this study, the		Iconar				
			results about the		u, SL;				
			influence of the	Romania					
			surface morphology	n	A;				
			of layers based on	Ministry	Stan,				
	Prepara		montmorillonite	of	GE;				
	tions of		(MMT) and silver	Research					
	Silver/		(Ag) on	and	, D;				
	Montm		antimicrobial	Innovatio					
	orillonit		1 I	n [PN-	chi, S;				
	e D'		reported. The coating		Trusc			10 2200/	
0.0	Biocom	COATINGS,9,	depositions were	1.2-	a, R;	2.22	0.260	10.3390/	
98.	posite Multila	817 (2019)	performed in the plasma of a radio	PCCDI- 2017-	Chifiri	2.33	0.369	coatings9 120817	\mathbb{Q}^2
	yers		1	0629,	uc, CM;			120017	
	and				Marut				
	Their			I/2018,	escu,				
	Antifun		studied layers were	PN-III-	L;				
	gal		single	P1-1.1-	Tite,				
	Activity		montmorillonite	TE-	T;				
				2016-	Stanci				
			silver/montmorillonit		u,				
			e multilayers (MMT-	04/2018]	GA;				
			Ag) obtained by		Hristu				
			magnetron sputtering		, R;				

		1
technique with a	Ghego	
different surface	iu, L;	
thickness. The	Badea	
resultant MMT-Ag	, ML;	
biocomposite	Turcul	
multilayers exhibited	et,	
a uniform	CS;	
distribution of	Ganci	
constituent elements	u, M;	
and enhanced	Chapo	
antimicrobial	n, P	
properties against	, .	
fungal biofilm		
development. Glow-		
discharge optical		
emission		
spectroscopy		
(GDOES) analysis		
revealed the		
formation of MMT-		
Ag biocomposite		
multilayers		
following the deposit		
of a silver layer for		
an MMT layer that		
was initially		
deposited on a Si		
substrate. The		
surface morphology		
and thickness		
evaluation of		
deposited		
biocomposite layers		
were performed by		
scanning electron		
microscopy (SEM).		
A qualitative		
analysis of the		
chemical		
composition of thin		
layers was performed		
and the elements O,		
Ag, Mg, Fe, Al, and		
Si were identified in		
the MMT-Ag		
biocomposite		

			multilayers. The in vitro antifungal assay proved that the inhibitory effect against the growth of Candida albicans ATCC 101231 CFU was more emphasized in the case of MMT-Ag biocomposite multilayers that in the case of the MMT layer. Cytotoxicity studies performed on HeLa cells showed that the tested layers did not show significant toxicity at the time intervals during which the assay was performed. On the other hand, it was observed that the MMT layers exhibited slightly higher biocompatible properties than the MMT-Ag composite						
pat Lay Ob d f Fu: 99. nal Iro Ox Na rtic in	on kide anopa cles spens	<i>COATINGS,9, 773 (2019)</i>	layers. Iron oxide nanoparticles have been extensively studied for challenges in applicable areas such as medicine, pharmacy, and the environment. The functionalization of iron oxide nanoparticles with dextran opens new prospects for application.	Romania n Ministry of Research and Innovatio n (PCCDI- UEFISC DI) [PN- III-P1- 1.2- PCCDI- 2017-	Predoi , D; Iconar u, SL; Predoi , MV; Buton, N; Megie r, C; Moteli ca- Heino, M	2.33	0.369	10.3390/ coatings9 120773	Q2

				<u>г</u>	 	
		Suspension	0629,			
		characterization	43PCCD			
		methods such as	I/2018,			
		dynamic light	PN-III-			
		scattering (DLS) and	P1-1.2-			
		zeta potential (ZP)	PCCDI-			
		have allowed us to	2017-			
		obtain information	0134,			
		regarding the	23PCCD			
		stability and	I/2018]			
		hydrodynamic	L .			
		diameter of these				
		suspended particles.				
		For rigorous				
		characterization of				
		the suspension of				
		dextran-coated iron				
		oxide nanoparticles				
		(D-MNPs), studies				
		have been performed				
		using ultrasound				
		measurements. The				
		results obtained from				
		DLS and ZP studies				
		were compared with				
		those obtained from				
		ultrasound				
		measurements. The				
		obtained results				
		show a good stability				
		of D-MNPs. A				
		comparison between				
		the D-MNP				
		dimension obtained				
		from transmission				
		electron microscopy				
		(TEM), X-ray				
		diffraction (XRD),				
		and DLS studies was				
		also performed. A				
		scanning electron				
		spectroscopy (SEM)				
		image of a surface				
		D-MNP layer				
		obtained from the				
		stable suspension				
L		L				

			shows that the particles are spherical in shape. The topographies of the elemental maps of the D-MNP layer showed a uniform distribution of the constituent elements. The homogeneity of the layer was also observed. The morphology of the HeLa cells incubated for 24 and 48 h with the D-MNP suspension and D- MNP layers did not change relative to the morphology presented by the control cells. The cytotoxicity studies conducted at different time intervals have shown that a slight decrease in the HeLa cell viability after 48 h of incubation for both samples was observed.						
100.	bulk obtaine	<i>SUPERCOND UCTOR SCIENCE & TECHNOLOG Y,32,125001 (2019)</i>	MgB2 green bodies were prepared by magnetic field slip casting in ethyl alcohol with added polyethyleneimine dispersing agent under a high magnetic field, mu H-0(0) = 12 T. Samples were further processed by spark plasma sintering (SPS) and	UEFISC DI, Romania [POC 37_697, 28/01.09. 2016 REBMA T, ERA- M 74/2017 BIOMB] ; NIMS;	Grigor oscuta , MA; Sandu , V; Kuncs er, A; Pasuk, I; Aldica , G; Suzuk i, TS; Vasyl	2.489	0.746	10.1088/ 1361- 6668/ab4 620	Q2

	compac		characterized for	[PFE12/2	kiv,				
	ts		superconducting	018]	O;				
	process		properties. Slip		Badic				
	ed by		casting provides		a, P				
	slip		texturing of MgB2						
	casting		(the degree of c-axis						
	under a		orientation is						
	12T		approximately						
	magneti		3.5%), which is						
	c field		further increased						
			significantly (to						
			about 21%) in the						
			SPSed sample. The						
			critical current						
			density (J(c))						
			displays anisotropy						
			relative to the						
			orientation of the						
			measuring magnetic						
			field. Specific						
			features of $J(c)(H, T)$						
			and of the pinning						
			force extracted from						
			magnetic						
			measurements with						
			the field parallel and						
			perpendicular to H-0						
			are discussed.						
			We present an	Romania					
			extension of the	n					
			dynamic electrical	Ministry					
	Modall		model, which enable	of					
	Modelli		us to explain some	Research	Anghe				
	ng J?V		important features of	and	l, DV;				
	hysteres is in		the perovskite solar	Innovatio	Nemn				
		PHYSICA	cells (PSC), like the	n [PN	es,			10.1088/	
101.	1 -	<i>SCRIPTA</i> , 94 ,1	shape of the	19-	GA;	2.151	0.442	1402-	02
101.	cells		hysteresis and the	060101,	Pintili	2.131	0.442	4896/ab3	Q2
	induced	25809 (2019)	appearance of the	PN 19-	e, I;			47d	
			?bump? in the so	060205,	Manol				
	by		called reverse scan,	PN 19-	escu,				
	voltage		without requiring	03];	A				
	poling		any additional	Romania					
			assumptions. We	-JINR					
1			read the read of t						
			give analytical	cooperati					

of the Lambert 20 project
of the Lambert?s project
function W for the [pp.
open circuit voltage, 26/2019]
the stationary
current, and the
instantaneous
current, which can be
written also in terms
of elementary
functions for the
most part of the
ranges of the
physical parameters.
The initial
polarization of the
cell, modeled as the
charging of a
capacitor with
voltage dependent
capacitance, is
consistently
determined in the
model, from the
initial stationary
conditions. This is
inline with a
previously observed
sharp increase of the
PSC capacitance
beyond the open-
circuit voltage.
Besides the known
features, we obtain
characteristics that
were not yet
analyzed
experimentally, like
the change of the
bump from the
reverse scan branch
of the J?V
characteristic to the
forward scan, with
the increase of the
poling voltage (or

102.	ng in monola yer transitio n metal	<i>SEMICONDU</i> <i>CTOR</i> <i>SCIENCE</i> <i>AND</i> <i>TECHNOLOG</i> <i>Y</i> , 34 ,125004 (2019)	the increase of the PSC capacitance). Monolayers of transition metal (from the group VI B) dichalcogenides (MoS2, MoSe2, WS2 and WSe2) show nonvolatile resistance switching: a transition from a high to a low resistance state. Here we propose two explanations for this behaviour. The first one is that the transition metals swaps from a trigonal prismatic to an octahedral coordination (due to a high applied electric field and pressure) and thus the monolayer switches from a semiconducting to a metallic phase. The second one is a two- step process where the high electric field and pressure break the M-X bonds and the transition metal atoms become firstly tetrahedrally coordinated and afterwards square- planar coordinated. Thus, all transition metal and chalcogen atoms are in the same plane, and the transition metal atoms are in contact	Romania n Ministry of Research and Innovatio n	A; Sava,		0.576	10.1088/ 1361- 6641/ab4 b85	Q2
------	--	---	--	---	-------------	--	-------	--------------------------------------	----

103. es with 2, 3 and 7 carbon atoms in the alkyl chain: compari son in the whole homolo gous series 103. estimation the whole homolo gous series 103. estimation the whole homolo gous series 103. estimation the whole homolo gous series 103. estimation the whole homolo gous series 103. estimation the takes place. It slows down the relaxation process as observed for related comparitum to the pure materials. The existence of two types of bonding might be the reason the surface layer 103. estimation the takes place. It slows takes place in the existence of two types of bonding might be the reason the surface layer 103. 1078 10.32 0.32	103.	2, 3 and 7 carbon atoms in the alkyl chain: compari son in the whole homolo gous	<i>CRYSTALS</i> ,, pp ()	6. An interaction by hydrogen bonding, between aerosil surface - OH groups and - CN or ester groups of the CPnB molecules takes place. It slows down the relaxation process as observed for related composites in comparison to the pure materials. The existence of two types of bonding might be the reason that Vogel temperature for the	n, Research , Develop ment and Innovatio n Funding) [21 N/08.02. 2019, PN19-	Frunz a, L; Schon hals,	3.078	0.32	2.2019.1	Q2
---	------	--	-----------------------------	--	---	----------------------------------	-------	------	----------	----

			does not show the odd-even effect. Temperature dependence of the relaxation rates for composites shows a crossover behaviour from a high to a low temperature regime. Moreover, the temperature dependence of the dielectric strength is unusual. As the loading degree is similar, comparison of the dielectric, spectroscopic and thermal data obtained here and with the results obtained for the composites with $n =$ $4 \dots 6$ can be directly done. Increasing the number of the members of the						
			homologous series confirms and hardens the preliminary						
	Compre		conclusions. Recently, a large	Romania	Albul				
104.	hensive In Vitro Testing of Calciu	MATERIALS,1	spectrum of biomaterials emerged, with emphasis on various pure, blended, or doped calcium phosphates (CaPs).	n Ministry of Research and Innovatio n,	escu, R; Popa, AC; Enciu, AM;	2.972	0.608	10.3390/ ma12223	Q2
	ate- Based Biocera mics with Orthope	2 ,3704 (2019)	Although basic cytocompatibility testing protocols are referred by International Organization for	CCCDI- UEFISC DI [PN- III-P1- 1.2- PCCDI-	escu, L; Dudau , M; Popes cu,			704	
	dic and		Standardization	2017-	ID;				

Dentistr	(ISO) 10993 (parts	0062, 58,	Mihai,		
y	1-22), rigorous in	7PFE/16.	S;		
Applica	vitro testing using	10.2018]	Codri		
tions	cutting-edge		ci, E;		
	technologies should		Pop,		
	be carried out in		S;		
	order to fully		Lupu,		
	understand the		AR;		
	behavior of various		Stan,		
	biomaterials		GE;		
	(whether in bulk or		Mand		
	low-dimensional		a, G;		
	object form) and to		Tanas		
	better gauge their		e, C		
	outcome when				
	implanted. In this				
	review, current				
	molecular techniques				
	are assessed for the				
	in-depth				
	characterization of				
	angiogenic potential,				
	osteogenic				
	capability, and the				
	modulation of				
	oxidative stress and				
	inflammation				
	properties of CaPs				
	and their cation- and/or anion-				
	substituted				
	derivatives. Using such techniques,				
	mechanisms of				
	action of these				
	compounds can be				
	deciphered,				
	highlighting the				
	signaling pathway				
	activation, cross-talk,				
	and modulation by				
	microRNA				
	expression, which in				
	turn can safely pave				
	the road toward a				
	better filtering of the				

105.	/SrTiO3	PHYSICAL REVIEW MATERIALS,3, 106001 (2019)	truly functional, application-ready innovative therapeutic bioceramic-based solutions. Electronic phase separation is crucial for the fascinating macroscopic properties of the LaAIO3/SrTiO3 (LAO/STO) paradigm oxide interface, including the coexistence of superconductivity and ferromagnetism. We investigate this phenomenon using angle-resolved photoelectron spectroscopy (ARPES) in the soft- x-ray energy range, where the enhanced probing depth combined with resonant photoexcitation allow us access to fundamental electronic structure characteristics - momentum-resolved spectral function, dispersions and ordering of energy bands, Fermi surface - of buried interfaces. Our experiment uses x-ray irradiation of the LAO/STO interface to tune its oxygen deficiency, building up a	- 165529]; JUWELS Cluster of the Juelich Superco mputing Centre	v, VN; Chiki na, A; Caput o, M; Husan u, MA; Bisti, F; Brach er, D; Schmi tt, T; Grano zio,	2.926	1.022	10.1103/ PhysRev Materials .3.10600 1	Q2
------	---------	---	--	---	---	-------	-------	---	----

	1		 	
	dichotomic system			
	where mobile weakly			
	correlated Ti t(2g)			
	electrons coexist			
	with localized			
	strongly correlated			
	Ti e(g) ones. The			
	ARPES spectra			
	dynamics under x-			
	ray irradiation shows			
	a gradual intensity			
	increase under			
	constant Luttinger			
	count of the Fermi			
	surface. This fact			
	identifies electronic			
	phase separation			
	(EPS) where the			
	mobile electrons			
	accumulate in			
	conducting puddles			
	with fixed electronic			
	structure embedded			
	in an insulating host			
	phase, and allows us			
	to estimate the lateral			
	fraction of these			
	puddles. We discuss			
	the physics of EPS			
	invoking a			
	theoretical picture of			
	oxygen-vacancy			
	clustering, promoted			
	by the magnetism of			
	the localized Ti e(g)			
	electrons, and			
	repelling of the			
	mobile t(2g)			
	electrons from these			
	clusters. Our results			
	on the irradiation-			
	tuned EPS elucidate			
	the intrinsic one			
	taking place at the			
	stoichiometric			
	LAO/STO interfaces.			
I		1		

106.	Reticul ated Mesopo rous TiO2 Scaffol d, Fabricat ed by Spray Coating , for Large- Area Perovsk ite Solar Cells	<i>ENERGY</i> <i>TECHNOLOG</i> <i>Y</i> , 8 ,UNSP 1900922 (2020)	Development of reproducible, low- cost fabrication technologies that are readily adaptable to large-scale production, is one of the main challenges in the field of perovskite solar cells (PSCs). So far, for all the other layers in a solar cell, large- area deposition methods have been adapted, except for mesoporous fabrication. Herein, the fabrication of mesoporous TiO2 scaffolds using a large-area deposition technique, such as spray coating, is shown. Moreover, this technique induces the formation of a very specific reticulated structure with well- delimited, oval- shaped cavities. The cavities have irregular dimensions, with diameters in the range of 3-7 mu m, approximate to 350 nm height, resulting in an overall increase in roughness of one order of magnitude, compared with the spin-coated mesoporous scaffold. Using this rough structured	UEFISC DI [PN- III-P1- 1.1-PD- 2016- 0703]; Romania n Ministry of Research and Innovatio n [PN19- 03, PN- III-16- 48-01, PN III- IDEI- 177/2017]	escu, M; Nemn es, GA; Florea , M; Dumit ru, V; Pintili e, L; Pintili	3.163	0.615	10.1002/ ente.201 900922	Q2
------	--	---	---	---	---	-------	-------	--------------------------------	----

		mesoporous TiO2 in PSCs not only does not affect the efficiency of solar cells but actually improves it from an average of 10% to 12% in comparison with the devices containing a spin- coated mesoporous scaffold.						
$107. \begin{array}{c} \text{es of} \\ \text{the} \\ \text{Sr3A12} \end{array} \begin{array}{c} LU \\ CE \end{array}$	DURNAL OF JMINESCEN 5,214,11654 (2019)	+,1b3+ were investigated. The	Materials Science and Advance d Characte rization Methods Program me of the " Ilie Murgules cu" Institute of Physical Chemistr y; Romania n Academy ; Romania n Ministry of Research and Innovatio n [PN18- 110101]	su, D; Mindr u, I; Iancul escu, A; Preda, S; Negril a, C;	2.961	0.421	10.1016/j .jlumin.2 019.1165 40	0

,,									
			specific to Sr3Al2O6						
			with space group Pa3						
			and lattice parameter						
			a = 15.8322						
			angstrom, while						
			SEM investigations						
			revealed equiaxial,						
			polycrystalline						
			particles, with sizes						
			in the submicronic						
			range, for both						
			Sr3Al2O6:Eu3+,Tb3						
			+ and						
			Sr3Al2O6:Eu3+/Eu2						
			+,Tb3+ samples. The						
			photoluminescence						
			spectra showed the						
			typical f-f						
			luminescence lines						
			of the Tb(3+) and						
			Eu3+ - ions,						
			accompanied by a						
			broad Eu2+						
			luminescence band at						
			510 nm (after						
			calcination in						
			reducing						
			atmosphere). The						
			"after-glow"						
			luminescence signal						
			and the						
			thermoluminescence						
			were assigned to the						
			recombination of						
			close neighbor						
			partners (electron and Eu2+ - hole						
			centers) within the						
			same complex of						
			defects.						
	Graphit	INTERNATIO	Controlled	Romania	· ·				
	ic	NAL	deposition of g-	n	M;			10.1016/j	
	anthan		C3N4 films, used as	Ministry	Vasile	4.084	0.581	.ijhydene	
108	carbon	IOURNAL OF							
108	nitride	JOURNAL OF	photoelectrodes in	of	, E;	4.084	0.381	.2019.07.	Q2
108.		JOURNAL OF HYDROGEN ENERGY, 44 ,		-	, E; Sima,	4.084	0.381		Q2

	odes	pp.24430-	challenge. In this	Research	Drada				
		24440 (2019)	paper, nanosheets of	[PN19-	N;				
		24440 (2019)		-					
	d by		g-C3N4 were	03, 21 N/08.02.	Logof				
	spray		deposited on FTO		atu, C				
	coating		and FTO/TiO2	2019]					
	method		substrates via spray						
			coating method. This						
			method allows the						
			preparation of g-						
			C3N4 films with a						
			better exposure of						
			nanosheet edges to						
			the solution and						
			light, favoring the						
			photocatalytic						
			process. The						
			morphology,						
			chemical						
			composition and						
			optical properties of						
			these films were						
			investigated, their						
			behavior as						
			photoanodes in						
			photoelectrochemical						
			water splitting being						
			also evaluated. The						
			results evidenced the						
			formation of g-C3N4 films with an						
			enhanced visible						
			light absorption and						
			improved						
			photocatalytic						
			activity. The						
			interaction of these						
			films with TiO2						
			substrate consists in						
			the insertion of						
			nitrogen species in						
			the TiO2 lattice. A						
			significant increase						
			in bulk donor						
			densities value						
			correlated with a						
			longer lifetime of						
L	1	1	0	l	I	I	1		

		photogenerated electrons was observed for TiO2/g- C3N4 photoanode. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.						
109. the nitroge n doped	JOURNAL OF PHYSICS- CONDENSED MATTER, 31 ,3 75201 (2019)	Mixtures of nitrogen- doped titanium dioxide (TiO2:N) with different concentrations of Ag and/or SiO2 particles (0.5, 1 and 2 wt.%) were prepared in solid state by mechanico-chemical interactions. Using UV-VIS spectroscopy, Raman scattering, photoluminescence (PL) and photoluminescence excitation (PLE), the influence of the particles on the host material is evaluated. UV-VIS spectroscopy studies indicate a TiO2:N band gap shift to the UV range with increasing concentrations of SiO2 and Ag particles. PL intensities decrease with increasing concentrations of Ag and/or SiO2 particles in the TiO2:N host matrix, which in turn could effectively	n Ministry of Research and Innovatio n, PCCDI- UEFISC DI within PNCDI III [PN-	Nila, A; Baibar ac, M; Udres cu, A; Smara nda, I; Matee scu, A; Matee scu, G; Mereu ta, P; Negril a, CC	2.711	0.846	10.1088/ 1361- 648X/ab 2692	Q2

			restrict the electron and hole recombination. To explain these processes, the different de- excitation ways will be advanced, taking into account the energy levels diagram of TiO2:N/Ag, TiO2:N/Ag, TiO2:N/Ag, TiO2:N/Ag/SiO2 systems. PLE spectra show a gradual decrease in their relative intensities after 165 min of continuous irradiation due to photosensitivity of TiO2:N. The plasmonic effect of Ag particles in the TiO2:N/Ag system is						
110.	Fabricat ion and charact erizatio n of Si1- xGex nanocry stals in as- grown and anneale d structur es: a compar	<i>BEILSTEIN</i> <i>JOURNAL OF</i> <i>NANOTECHN</i> <i>OLOGY</i> , 10 , pp.1873-1882 (2019)	highlighted for the first time by PLE studies. Multilayer structures comprising of SiO2/SiGe/SiO2 and containing SiGe nanoparticles were obtained by depositing SiO2 layers using reactive direct current magnetron sputtering (dcMS), whereas, Si and Ge were co- sputtered using dcMS and high- power impulse magnetron sputtering (HiPIMS). The as-	ERA.NE T project PhotoNa noP UEFISC DI [33/2016]; PCE project UEFISC DI [122/201 7]; Romania	Maral oiu, AV; Stavar ache, I; Gudm undss on, JT; Manol escu,	2.269	0.633	10.3762/ bjnano.1 0.182	Q2

at	ive	grown structures	of	VS;		
stu	udy	subsequently	Research			
	5	underwent rapid	and	, ML;		
		thermal annealing	Innovatio			
		(550-900 degrees C	n through			
		for 1 min) in N-2	NIMP	HG		
		ambient atmosphere.	Core			
		The structures were	Program			
		investigated using X-				
		ray diffraction, high-				
		resolution	2019,			
		transmission electron	,			
		microscopy together	03];			
		with spectral	Technolo			
		photocurrent	gy			
		measurements, to	Develop			
		explore structural	ment			
		changes and	Fund of			
		corresponding	the			
		properties. It is	Icelandic			
		observed that the	Centre			
		employment of	for			
		HiPIMS facilitates	Research			
		the formation of	[159006-			
		SiGe nanoparticles	0611]			
		(2.1 + - 0.8 nm) in	0011]			
		the as-grown				
		structure, and that				
		presence of such				
		nanoparticles acts as				
		a seed for				
		heterogeneous				
		nucleation, which				
		upon annealing				
		results in the				
		periodically arranged				
		columnar self-				
		assembly of SiGe				
		core-shell				
		nanocrystals. An				
		increase in				
		photocurrent				
		intensity by more				
		than an order of				
		magnitude was				
		achieved by				

			annealing.						
			Furthermore, a						
			detailed discussion is						
			provided on strain						
			development within						
			the structures, the						
			consequential						
			interface						
			characteristics and its						
			effect on the						
			photocurrent spectra.						
			Novel biomedical	Ministry					
			composites, based on	of					
			organically modified						
			vermiculite and	n, Youth					
			montmorillonite with						
			deposited Ca-	Sports of					
			deficient	the					
			hydroxyapatite	Czech					
	Study		(CDH), were	republic	D				
	of the		prepared. The	from the	Pazou				
	Structur		monoionic sodium		rkova,				
	e and		forms of vermiculite and montmorillonite	Program me of	L;				
	Antimic		were intercalated		Reli, M;				
	robial		with chlorhexidine	bility	Hunda				
	Activity		diacetate (CA). The	(NPU II)	kova,				
	of Ca-		surfaces of	project	M;			10.3390/	
111.		MATERIALS,1	organoclays were	"IT4Inno		2 972	0.608	ma12182	02
111.		2 ,2996 (2019)	used for the	vations	ora, E;	2.912	0.000	996	
	Cerami		precipitation of Ca-	excellenc				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	cs on		deficient	e in	, D;				
	Chlorhe		hydroxyapatite. The		Marty				
	xidine		composites with Ca-	[LQ1602	nkova,				
	Nanocl		deficient];	GS;				
1	ay Saala at aa t		hydroxyapatite	Regional	Lafdi,				
	Substrat		showed very good	Materials	K				
	e		antibacterial effects,	Science					
			similar to the	and					
			antimicrobial activity	Technolo					
			of pure organoclay	gy					
			samples. Better	Centre -					
			antibacterial activity	Feasibilit					
			was shown in the	У					
			organically modified	Program					
			montmorillonite	-					

			annala with C-	Miniat					
			sample with Ca-	Ministry					
			deficient	of					
			hydroxyapatite	Educatio					
			compared with the	n, Youth					
			vermiculite	and					
			composite, but, in	Sports of					
			the case of	the					
			Staphylococcus	Czech					
			aureus, both	Republic					
			composites showed	[LO1203					
			the same minimum];					
			inhibitory	Ministry					
			concentration (MIC)	of					
			value. The	Educatio					
			antimicrobial effect	n, Youth					
			of composites	and Sport					
			against bacteria and	of the					
			fungi increased with	Czech					
			the time of exposure.	Republic					
			The structural	Ministry					
			characterization of	of					
			all the prepared	Educatio					
			materials, performed						
			using X-ray	& Sports					
			diffraction and FT	- Czech					
			infrared	Republic					
			spectroscopy	[SP2018/					
			analysis, detected no	166,					
			changes in the	SP2018/					
			original clay or CDH						
			during the	112]					
			intercalation or						
			precipitation process,						
			therefore we expect						
			-						
			the strength of the						
			compounds to be in						
			the original power.					ļ	
	Develo		In the case of DEMO		Galata				
	pment	FUSION	fusion reactor, the	Euratom	nu, M;				
	of W-	ENGINEERIN	divertor should be	research	Cioca,			10.1016/j	
	monobl	G AND	able to extract a	and	M;			.fusengde	
112.	ock	DESIGN,146,	steady heat flux of	training	Ighige	1.457	0.32	s.2019.0	Q2
	divertor		about 10 MW/m(2).	program	anu,			2.074	
1				1	1	1	1	12.U/H	1 '
	compon	pp.1351-1354	A promising concept	me	A;				
	compon ents	(2019)	A promising concept is the W-monoblock		A; Ruiu,				

embedd	connected to a	Encul	
ed	CuCrZr or an	escu,	
thermal	advanced Cu ODS	M;	
barrier	alloy pipe passing	Popes	
interfac	through the W	cu, B;	
es	component. Taking	Galata	
	into account the	nu, A	
	optimum operating		
	temperature		
	windows for W and		
	existing Cu-based		
	alloys and the		
	thermal expansion coefficients		
	mismatch of these		
	two materials, a		
	"thermal barrier"		
	interface material is		
	inserted in between		
	in order to mitigate		
	the thermal stresses		
	and to optimize the		
	heat flow through		
	divertor components.		
	In this work we		
	investigate the		
	feasibility to realize		
	such divertor		
	components using		
	materials produced		
	by FAST (field		
	assisted sintering		
	technology). This		
	powder metallurgy		
	technique was used		
	firstly to produce W		
	or W-based		
	composites and the		
	thermal barriers in an		
	almost final shape		
	and then to join the		
	materials in realistic		
	divertor mock-ups.		
	The thermal barrier		
	materials are various		
	Cu-based composites		
	F 199119		

		 which are included both as single material or as functionally graded components. The interface quality between different materials is investigated by scanning electron microscopy and the heat flow through components is evaluated using simulations. 	European					
113. Sintering and irradiat on of copper- based high entropy alloys for nuclear fusion	i <i>FUSION</i> <i>ENGINEERIN</i> <i>G AND</i> <i>DESIGN</i> , 146 , pp.1824-1828 (2019)	In this study, CuxCrFeTiV (x = 0.21, 0.44, 1 and 1.7 M ratio) high entropy alloys have been devised for thermal barriers between the plasma facing tungsten tiles and the copper-based heat sink in the first wall of nuclear fusion reactors. The high entropy alloys were produced by ball milling the elemental powders, followed by consolidation with spark plasma sintering. Irradiation of the equiatomic CuCrFeTiV sample was carried out at room temperature with Ai(+) (300 keV) beams with a fluence of 3 x 10(20) at/m(2). Structural changes prior and after irradiation were	Union's Horizon 2020 research and innovatio n program [633053] ; Fundaca o para a Ciencia e Tecnolog iaPortug uese Foundati on for Science and Technolo gy [Pest- OE/SAD G/LA001 0/2013]; "Fundaca o para a Ciencia e Tecnolog	Dias, M; Antao, F; Catari no, N; Galata nu, A; Galata nu, A; Galata nu, M; Ferrei ra, P; Correi a, JB; da Silva, RC; Gonca lves, AP; Alves, E	1.457	0.32	10.1016/j .fusengde s.2019.0 3.044	

			investigated by scanning electron microscopy, coupled with energy dispersive X-ray spectroscopy, X-ray diffraction and thermal diffusivity. Preliminary results showed the presence of heterogenous and multiphasic microstructures in all samples. Moreover, with the increase of the Cu content it is possible to observe the formation of Cu- rich structures. The diffractogram of the CuCrFeTiV sample revealed major peaks of a BCC crystal structure and minor	- UI0084/2 011, UID/Mul ti/04349/ 2013]; FCTPort uguese					
	Thermo		crystal structure. In addition, after irradiation no modifications in the CuCrFeTiV microstructure or in the diffractogram were observed. W-laminates are multi layered composites realized	gy [SFRH/B PD/6866 3/2010]	Galata nu, A;				
114.	ical properti es of	<i>DESIGN</i> , 146 , pp.2371-2374	from alternately stacked W and a second metal foils. Such materials are promising candidates for W-based structural materials for fusion reactors like DEMO or beyond concepts,	Euratom research and training program me [633053]	nu, A; Galata nu, M; Encul escu, M; Reiser , J; Sickin ger, S	1.457	0.32	10.1016/j .fusengde s.2019.0 3.193	Q2

FAST	due to the fact that	
	due to the fact that	
joining	cold-rolled ultrafine-	
	grained thin W foils	
	show exceptional	
	properties in terms of	
	ductility, toughness	
	and ductile to brittle	
	transition (DBT), in	
	contrast to classic	
	bulk W materials.	
	Therefore, different	
	routes to transfer the	
	W foils properties to	
	bulk materials have	
	been investigated. In	
	this work we present	
	the results obtained	
	for W-Cu laminates	
	produced via a FAST	
	(Field Assisted	
	Sintering Technique)	
	joining route. The	
	main advantages of	
	FAST resides in the	
	short processing	
	time, with	
	subsequent lower	
	recrystallization	
	detrimental effects.	
	Structural and	
	thermophysical	
	properties show that	
	the best materials are	
	obtained for about	
	100 mu m thick W	
	foils and 50-100 mu	
	m thick Cu foils,	
	while tensile and	
	Charpy impact tests	
	results show that the	
	FAST processed W-	
	Cu laminates are	
	similar to the W-Cu	
	laminates obtained	
	by diffusion	
	bonding.	

115.	3D Superpa ramagn etic Scaffol ds for Bone Mineral ization under Static Magnet ic Field Stimula tion	<i>MATERIALS</i> , 1 2 ,2834 (2019)	emu/g were added to Ormocore, in concentrations of 0,	Program National Program [PN 16 47- LAPLAS IV]; European Regional Develop	IA; Calin, BS; Musta ciosu, CC; Mihail escu, M; Moldo van, A; Crisan , O; Leca, A; Lucul	2.972	0.608	10.3390/ ma12172 834	Q2
115.	etic Scaffol ds for Bone Mineral ization under	<i>MATERIALS</i> , 1 2 ,2834 (2019)	nanoparticles (MNPs) composites and possessed complex and reproducible architectures. MNPs with a diameter of	2016- 1787]; National Program National Program [PN 16	ciosu, CC; Mihail escu, M; Moldo van,		0.608	ma12172	Q2
	Magnet ic Field Stimula		magnetization of 30 emu/g were added to Ormocore, in concentrations of 0, 2 and 4 mg/mL. The homogenous distribution and the concentration of the	IV]; European Regional Develop ment Fund through Competit	, O; Leca, A;				
			MNPs from the unpolymerized Ormocore/MNPs composite were preserved after the photopolymerization process. The MNPs in the scaffolds retained their superparamagnetic behavior. The	iveness Operatio nal Program 2014- 2020, Priority axis 1 [P_36_6 11, 107066]					

					1		1		
			specific						
			magnetizations of the						
			scaffolds with 2 and						
			4 mg/mL MNPs						
			concentrations were						
			of 14 emu/g and 17						
			emu/g, respectively.						
			The MNPs reduced						
			the shrinkage of the						
			structures from 80.2						
			+/- 5.3% for						
			scaffolds without						
			MNPs to $20.7 \pm //$						
			4.7% for scaffolds						
			with 4 mg/mL						
			MNPs. Osteoblast						
			cells seeded on						
			scaffolds exposed to						
			static magnetic field						
			of 1.3 T deformed						
			the regular						
			architecture of the						
			scaffolds and evoked						
			faster mineralization						
			in comparison to						
			unstimulated						
			samples. Scaffolds						
			deformation and						
			extracellular matrix						
			mineralization under						
			static magnetic field						
			(SMF) exposure						
			increased with						
			increasing MNPs						
			concentration. The						
			results are discussed						
			in the frame of						
			gradient magnetic						
			fields of similar to 3						
			x 10(-4) T/m						
			generated by MNPs						
			over the cells bodies.						
	D1 '			E	T.				
	Physica	THIN SOLID	Copper (Cu) and	Executiv	Locov			10.1016/j	
116.	1	<i>FILMS</i> , 685 ,	dysprosium (Dy) co-	e Unit	ei, C;	1.888	0.324	.tsf.2019.	Q2
		pp.379-384	doped zinc oxide	for	Coma			06.027	-
	es of	(2019)	(ZnO) thin films	Financin	n, D;				

Cu and	wone fabricated be-	allicher	Dadu		
Cu and	were fabricated by	g Higher			
Dy co-	radio frequency	Educatio			
doped	magnetron sputtering		Ion,		
ZnO	(RF-magnetron	Research			
thin	sputtering) using a	,	Antoh		
films	homemade target		e, VA;		
prepare	having the atomic	ment and			
d by	percentage of Cu and	Innovatio			
radio	Dy of 1%, onto	n	Dumit		
frequen	optical glass	(UEFISC	ru, A;		
су	substrates and quartz	DI),	Iftimi		
magnetr	substrates. The	FPRD	e, S;		
on	structural,	grant	Antoh		
sputteri	morphological,	[18/2018	e, S		
ng for	optical, and electrical]			
hybrid	properties of				
organic/	fabricated ZnO:(Cu,				
inorgan	Dy) structures were				
ic	analyzed and				
electron	discussed. It was				
ic	found that all				
devices	samples have				
	hexagonal Wurtzite				
	structure. Optical				
	transmission				
	measurements				
	indicate values larger				
	than 75% in the 400-				
	2500 nm ranges. The				
	current-voltage				
	characteristics of				
	hybrid				
	heterojunctions				
	based on ZnO:(Cu,				
	Dy) and poly(3-				
	hexylthiophene-2.5-				
	diyl) (P3HT) or				
	copper (II)				
	phthalocyanine (CuPc) thin films				
	were acquired in the				
	dark, in ambient				
	atmosphere, and they				
	exhibit the typical				
	diode behavior,				

			the luminance and CIE circle have shown a significant increase of the light emission for the glass-ceramic samples, while the Magnetic Circular Dichroism indicate lower symmetry coordination around the Eu3+ ions in the glass sample compared with the glass-ceramic and also a change in the coordination number to the higher values. A carbon-based layer	Derry				
118.	Carbon- based sprayed electrod es for pyroele ctric applicat ions	<i>ONE</i> , 14 ,e0221 108 (2019)	vas deposited by spraying on top of a ferroelectric layer grown by sol-gel on Si (001) substrate and its properties as electrode and absorber for pyroelectric detection were tested. It was found that the electric properties of the ferroelectric capacitor with top carbon-based sprayed electrode (CBSE) are comparable with those of the capacitors with standard top SrRuO3 (SRO)/Au electrode. Pyroelectric measurements show that the pyroelectric signal recorded on	Romania n Ministry of Educatio n	Galca, AC; Boni, AG;	0.978	10.1371/j ournal.po ne.02211 08	Q2

			C 1						1
			ferroelectric						
			capacitors with top						
			CBSE electrode is						
			2.5 times greater						
			than for top SRO/Au						
			electrode for low						
			frequency range. The						
			value of the						
			pyroelectric						
			coefficient was						
			estimated to						
			9.73.10(-4) C/m(2)K						
			for CBSE electrodes						
			and 3.36.10(-4)						
			C/m(2)K for						
			SRO/Au						
			respectively. The						
			fabrication process						
			of CBSE is of low						
			cost, easy to						
			implement and with						
			high throughput						
			making it attractive						
			for manufacturing						
			various devices like						
			pyroelectric detector,						
			thermal imaging,						
			solar cells, etc.						
			We recall theoretical	Research					
			studies on transient	Fund of					
	General		transport through	the					
	ized		interacting	Universit					
	Master		mesoscopic systems.	y of	A 11				
	Equatio		It is shown that a	IcelandIs	Moldo				
	n		generalized master	tanbul	veanu,				
	Approa		equation (GME)	Universit	V;			10.0000	
110	ch to	ENTROPY,21,			Manor	0.410	0 -1 -	10.3390/	
119.	Time-	731 (2019)	terms of many-body	Icelandic	escu,	2.419	0.516	e210807	Q2
	Depend		states provides the	Research	A;			31	
	ent		suitable formal	Fund	Gudm				
	Many-		framework to capture		undss				
	Body		both the effects of	051];	on, V				
	Transpo		the Coulomb	Icelandic					
	rt		interaction and	Instrume					
	11		electron-photon	nts Fund;					
			coupling due to a	Reykjavi					
			coupring due to a	псукјач					

	surrounding single-	k			
	mode cavity. We	Universit			
	outline the derivation	-			
	of this equation	[815051]			
	within the Nakajima-	; CNCS-			
	Zwanzig formalism	UEFISC			
	and point out	DI [PN-			
	technical problems	III-P4-			
	related to its	ID-PCE-			
	numerical	2016-			
	implementation for	0084];			
	more realistic	Romania			
	systems which can	n Core			
	neither be described	Program			
	by non-interacting	[PN19-			
	two-level models nor	-			
	by a steady-state	N/08.02.			
	Markov-Lindblad	2019]			
	equation. We first				
	solve the GME for a				
	lattice model and				
	discuss the dynamics				
	of many-body states				
	in a two-dimensional				
	nanowire, the				
	dynamical onset of the current-current				
	correlations in				
	electrostatically				
	coupled parallel				
	quantum dots and				
	transient				
	thermoelectric				
	properties. Secondly,				
	we rely on a				
	continuous model to				
	get the Rabi				
	oscillations of the				
	photocurrent through				
	a double-dot etched				
	in a nanowire and				
	embedded in a				
	quantum cavity. A				
	many-body				
	Markovian version				
	of the GME for				
 	1				

120.	Rapid thermal anneali ng for high- quality ITO thin films deposit ed by radio- frequen cy magnetr on sputteri ng	BEILSTEIN JOURNAL OF NANOTECHN OLOGY,10, pp.1511-1522 (2019)	systems is also presented. In this work, rapid thermal annealing (RTA) was applied to indium tin oxide (ITO) films in ambient atmosphere, resulting in significant improvements of the quality of the ITO films that are commonly used as conductive transparent electrodes for photovoltaic structures. Starting from a single sintered target (purity 99.95%), ITO thin films of predefined thickness (230 nm, 300 nm and 370 nm) were deposited at room temperature by radio-frequency magnetron sputtering (rfMS). After deposition, the films were subjected to a RTA process at 575 degrees C (heating rate 20 degrees C/s), maintained at this temperature for 10 minutes, then cooled down to room temperature at a rate of 20 degrees C/s. The film structure was modified by changing the]; Program NUCLE	a, C; Sbarc ea, BG; Craciu		0.633	10.3762/ bjnano.1 0.149	Q2
------	---	---	---	------------------------	--	--	-------	-------------------------------	----

	1	1	1		1	1		1	,
			deposition thickness						
			or the RTA process.						
			X-ray diffraction						
			investigations						
			revealed a cubic						
			nanocrystalline						
			structure for the as-						
			deposited ITO films.						
			After RTA,						
			polycrystalline						
			compounds with a						
			textured (222) plane						
			were observed. X-						
			ray photon						
			spectroscopy was						
			used to confirm the						
			beneficial effect of						
			the RTA treatment						
			on the ITO chemical						
			composition. Using a						
			Tauc plot, values of						
			the optical band gap						
			ranging from 3.17 to						
			3.67 eV were						
			estimated. These						
			values depend on the						
			heat treatment and						
			the thickness of the						
			sample. Highly						
			conductive indium						
			tin oxide thin films						
			$(rho = 7.4 \times 10(-5))$						
			Omega cm) were						
			obtained after RTA						
			treatment in an open						
			atmosphere. Such						
			films could be used						
			to manufacture						
			transparent contact						
			electrodes for solar						
			cells.						
	Structur	CURRENT	Multi-layered	POC-G	Botea,				
	al,	APPLIED	structures, composed		M;			10.1016/j	
121.	1 1	PHYSICS,19,	of thin films from	MAT2IT		2.01	0.374	.cap.201	Q2
141.	and	pp.804-810	materials with		L;	2.01	0.577	9.04.010	×~
	pyroele	1 × ×	different	diary	Pasuk,			2.04.010	
	Phoene	(2017)		unar y	1 asur,				

ctric	compositions or	Body-	I;	
properti	physical properties,	Romania		
es of up and	represents a way to obtain enhanced	n Ministry	A;	
		Ministry	Trupi	
down	properties or even	of Decemb	na, L;	
graded	new functionalities.	Research		
PZT	In this work, lead	and	a, R;	
multila	zirconate titanate	Innovatio		
yers	PbZrxTi1-xO3 (PZT;	· ·	rescu,	
	x = 0.20, 0.52, 0.80	[54/2016,		
	multilayers were	105726]	Pintili	
	grown by pulsed		e, L	
	laser deposition			
	(PLD) on a single			
	crystal strontium			
	titanate (SrTiO3,			
	STO) substrate,			
	using a strontium			
	ruthenate (SrRuO3,			
	SRO) film as buffer			
	layer for epitaxial			
	growth, and also as			
	back electrode. Up			
	and down multi-			
	layers were grown			
	and their physical			
	and structural			
	properties were			
	compared, up being			
	the structure in			
	which Zr			
	concentration was			
	varied from 20%			
	near the STO			
	substrate to 80% at			
	the surface, while			
	down is for the			
	structure in which			
	the Zr concentration			
	starts with 80% near			
	the substrate and			
	ends with 20% at the			
	surface. It was found			
	that the electric and			
	pyroelectric			
	properties of the two			
	properties of the two			

			graded structures are						
			significantly						
			different. The up						
			structure presents						
			electric properties						
			that are comparable						
			with those of single						
			composition PZT						
			films while the						
			properties of the						
			down structure are						
			deteriorated,						
			especially in terms of						
			the leakage current						
			magnitude.						
			Pyroelectric signal						
			could be measured						
			only for the up						
			structure. These						
			differences were						
			attributed to larger						
			density of structural						
			defects in the down						
			structure compared						
			to the up one. This is						
			due to the different						
			growth sequence:						
			Lop structure starts						
			with tetragonal PZT						
			on cubic substrate						
			(lower lattice						
			mismatch, 1.1%)						
			while down structure						
			starts with						
			rhombohedral PZT						
			on cubic substrate						
			(larger lattice						
			mismatch, almost						
			5%).						
	Effect		We report on the	Romania	Mihal				
	of	MATERIALS	influence of dilute		ache,				
				n Ministry				10.1016/j	
100	dilute	RESEARCH	doping combined	Ministry	V;	2 255	0 412	.materres	
122.	doping	BULLETIN,11	with the processing	of Decemb	Negril	5.555	0.412	bull.2019	Q2
	and	5 , pp.37-48	conditions on the	Research				.03.001	
	non-	(2019)	morphological,	and	Bercu,				
	equilibr		structural, chemical	Innovatio	V;				

ium	states,	n [CCDI-	Secu.		
synthesi			M;		
s on the	and magnetic	DI PN-	Vasile		
structur	0	III-P1-	, E;		
al,	xNixO nanopowders.		Stan,		
lumines		PCCDI-	GE		
cent	the ZnO powder	2017-			
and		0871,			
magneti	randomly-aggregated				
c		I/2018,			
properti		PN18-			
es of	nanocrystals	110101]			
nanocry	arranged in columnar]			
stalline	particles, modifies				
Zn1-	the high-energy-				
xNixO	component of O1 s				
(x=0.00	spectrum and				
25-	increases the				
0.03)	modified Auger				
	parameter in XPS,				
	enhances the blue				
	photoluminescence				
	(PL) emission,				
	suppresses the green				
	PL emission and the				
	intensity of the $g =$				
	1.997 EPR signal.				
	Ni-ZnO				
	nanostructures show				
	room-temperature				
	ferro-magnetism				
	(implying they can				
	serve as dilute				
	magnetic				
	semiconductors).				
	The saturation				
	magnetization,				
	crystallite size and				
	microstrain increase				
	with the doping				
	level; the c-axis				
	constant and unit cell				
	volume decrease,				
	however, being				
	unexpectedly higher				
	with respect to a				

		(reference) ZnO powder with a relaxed lattice. We demonstrate that the investigated properties were controlled by both (dilute) doping level and donor native defects produced by non-equilibrium (oxygen-deficiency and high rate of) ZnO formation.						
Gd3+ co- doping influence e on the morpho logical, up- convers ion lumines cence and magneti c properti es of LiYF4: Yb3+/E r3+ nanocry stals	JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 130 , pp.236-241 (2019)	Gd3+ co-dopant on the structure, morphology and up- conversion luminescence/magne tic properties of the LiYF4:Gd3+/Yb3+/ Er3+ nanocrystals was investigated and compared to those of Gd-free samples. Electron microscopy has indicated an inhibiting effect of the agglomeration and collapsing process of the nanocrystals compared to the Gd- free powder samples. The surface analysis of nanocrystals have not shown oxygen- metal bonds related to the metal oxidation within the surface nanometric layer. The paramagnetic properties are related to the magnetic	Ministry of Research and Innovatio n [PN18- 110201]; POC (Europea n Regional Develop ment Fund,	CE; Bartha , C; Matei, E; Negril a, C; Crisan , A; Secu, M	2.752	0.385	10.1016/j .jpcs.201 9.03.003	

		moment of the Gd3+ ions. The up- conversion luminescence of the LiYF4:Gd3+/Yb3+/ Er3+ nanocrystals is about six times stronger than in LiYF4:Yb3+/Er3+ nanocrystals; the enhancement effect is most probably due to the lattice distortion induced by the Gd co-doping.						
ramagn 124 etic	BEILSTEIN JOURNAL OF NANOTECHN OLOGY,10, pp.1280-1289 (2019)	A critical discussion on the presently available models for the relaxation time of magnetic nanoparticles approaching the superparamagnetic regime in the presence of interparticle dipolar interactions is considered. The direct implications of such interactions for magnetic fluid hyperthermia therapy through susceptibility loss mechanisms give rise to an indirect method for their study via specific absorption rate measurements performed on ferrofluids of different volume fractions. The theoretical support for the specific evolution of the	Program [PN18- 110101/2 018]; Romania n Ministry of Research and Innovatio n, CCCDI- UEFISC DI [PN- III-P1.2-	Kuncs er, A; Iacob, N; Kuncs er, VE	2.269	0.633	10.3762/ bjnano.1 0.127	Q2

		relaxation time constant and the anisotropy energy barrier versus the interparticle interactions in a perturbation approach of the simple Neel expression for the relaxation time is provided via static and time-dependent micromagnetic simulations. Severe plastic						
Structur al Change in Ni- Fe-Ga Magnet ic Shape Memor y Alloys after Severe Plastic Deform ation	<i>MATERIALS</i> , 1 2 ,1939 (2019)	deformation (SPD) is widely considered to be the most efficient process in obtaining ultrafine-grained bulk materials. The aim of this study is to examine the effects of the SPD process on Ni-Fe-Ga ferromagnetic shape memory alloys (FSMA). High-speed high-pressure torsion (HSHPT) was	Romania n Ministry of Research and Innovatio n [47PCC DI/2018, PN18- 11]	, C;	2.972	0.608	10.3390/ ma12121 939	Q2

		used to study the two-phase microstructure of the alloys. The influence of deformation on microstructural features, such as martensitic plates, intragranular gamma phase precipitates, and grain boundaries' dependence of the extent of deformation is disclosed by transmission electron microscopy. Moreover, the work brings to light the influence of deformation on the characteristics of martensitic transformation (MT). Vickers hardness measurements were carried out on disks obtained by SPD so as to correlate the hardness with the microstructure. The						
		as to correlate the hardness with the						
126.	<i>MATERIALS</i> , 1 2 ,1771 (2019)	This study presents the synthesis and characterization of lanthanum-modified alumina supported cerium-manganese mixed oxides, which were prepared by three different methods	POC-G project MAT2IT [54/2016, 105726]; Core Program PN19-03 [21	Neatu, S; Trand afir, MM; Stanoi u, A; Florea , OG; Simio	2.972	0.608	10.3390/ ma12111 771	Q2

Ox	xides	(coprecipitation,	N/08.02.	n, CE;		
for			2019]	Leona		
		citrate-based sol-gel		t, LN;		
		method) followed by		Cobia		
c		calcination at 500		nu, C;		
		degrees C. The		Gheor		
		physicochemical		ghe,		
		properties of the		M;		
		synthesized materials		Florea		
		were investigated by		, M;		
		various		Neatu,		
		characterization		F		
		techniques, namely:				
		nitrogen adsorption-				
		desorption isotherms,				
		X-ray diffraction				
		(XRD), X-ray				
		photoelectron				
		spectroscopy (XPS),				
		scanning electron				
		microscopy (SEM)				
		and H-2-temperature				
		programmed				
		reduction (TPR).				
		This experimental				
		study demonstrated				
		that the role of the				
		catalytic surface is				
		much more				
		important than the				
		bulk one. Indeed, the				
		incipient				
		impregnation of				
		CeO2-MnOx				
		catalyst, supported				
		on an optimized				
		amount of 4 wt.%				
		La2O3-Al2O3,				
		provided the best				
		results of the				
		catalytic combustion				
		of methane on our				
		catalytic micro-				
		convertors. This is				
		mainly due to: (i) the				
		highest pore size				

		dimensions according to the Brunauer-Emmett- Teller (BET) investigations, (ii) the highest amount of Mn4+ or/and Ce4+ on the surface as revealed by XPS, (iii) the presence of a mixed phase (Ce2MnO6) as shown by X-ray diffraction; and (iv) a higher reducibility of Mn4+ or/and Ce4+ species as displayed by H-2-TPR and therefore more reactive oxygen species.						
127.	<i>MOLECULES</i> , 24 ,2169 (2019)	This study aimed at developing an antimicrobial material based on hydroxyapatite (HAp) and peppermint essential oil (P-EO) in order to stimulate the antimicrobial activity of hydroxyapatite. The molecular spectral features and morphology of the P- EO, HAp and hydroxyapatite coated with peppermint essential oil (HAp-P) were analyzed using Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM).	Ministry of Research and Innovatio n [PN-	Groza,	3.06	0.62	10.3390/ molecule s241121 69	Q2

The coating of the
HAp with the P-EO
did not affect the
ellipsoidal shape of
the nanoparticles.
The overlapping of
IR bands of P-EO
and HAp in the
HAp-P spectrum
determined the
formation of the
broad molecular
bands that were
observed in the
spectral regions of
400-1000 cm(-1) and
1000-1200 cm(-1).
The antibacterial
activity of the P-EO,
HAp and HAp-P
were also tested
against different
Gram-positive
bacteria (methicillin-
resistant
Staphylococcus
aureus (MRSA) 388,
S. aureus ATCC
25923, S. aureus
ATCC 6538, E.
faecium DSM
13590), Gram-
negative bacteria
(Escherichia coli
ATCC 25922, E. coli
C5, P. aeruginosa
ATCC 27853, P.
aeruginosa ATCC
9027) and a fungal
strain of Candida
parapsilosis. The
results of the present
study revealed that
the antimicrobial
activity of HAp-P
increased

128.	The Influen ce of Heteroa tom Dopant s Nitroge n, Boron, Sulfur, and Phosph orus on Carbon Electro catalyst s for the Oxygen Reducti on Reactio n	<i>CHEMPLUSC</i> <i>HEM</i> , 84 , pp.457-464 (2019)	significantly over that of HAp. A hard templating method, using SBA- 15 in combination with glucose solution and different heteroatom precursors, has been employed to investigate the influence of the different heteroatom dopants nitrogen, boron, sulfur, and phosphorus on carbon electrocatalysts for the oxygen reduction reaction. Samples were synthesized under the same conditions and resulted in a similar morphology and surface areas around 1000 m(2)/g. Incorporating nitrogen into the carbon matrix was found to be easier than for boron or phosphorus, while sulfur doping proved problematic and only yielded 2 at% of sulfur or less. Different dopant concentrations as well as a combination of dopants suggested that nitrogen was the only heteroatom exerting an actual influence on the	Materials Research Institute of Queen Mary, Universit y of London	Preuss , K; Siwon iku, AM; Bucur, CI; Titiric i, MM	3.441	0.575	10.1002/ cplu.201 900083	Q2
------	---	--	---	--	---	-------	-------	--------------------------------	----

			catalytic activity,						
			resulting in higher						
			electron transfer						
			numbers. The other						
			dopants exhibited a						
			similar performance						
			regardless of the						
			dopant content,						
			though slightly						
			improved when						
			compared to an						
			undoped control						
			sample. These						
			findings indicate that						
			incorporated						
			nitrogen can act as						
			catalytic sites, while						
			boron, sulfur and						
			phosphorus can						
			enhance the catalytic						
			activity by possibly						
			creating defects in						
			the carbon matrix.						
			Technologically	CNCS-					
			relevant	UEFISC					
	Phase		tetragonal/cubic	DI [PN-	Cojoc				
	Control		phases of HfO2 can	III-P4-	aru,				
	in		be stabilized at room	ID-PCE-	B;				
	Hafnia:		temperature by	2016-	Avra				
	New		doping with trivalent	0305,	m, D;				
	Synthes		rare earths using	PCE	Negre				
	is		various approaches	67/2017]	a, R;				
	Approa	ACS	denoted generically	;	Ghica,			10.1021/	
	ch and	OMEGA,4,	as bulk	Romania	1 1			acsomeg	
129.	Conver	pp.8881-8891	coprecipitation.	n	Kessle	2.584	0.533	a.9b0058	Q2
	gence	(2019)	Using in situ/ex situ	Ministry	r, VG;			0	
	of		X-ray diffraction	of	Seisen				
	Averag		(XRD), Raman	Research	· · ·				
	e and		spectroscopy, high-	and	GA;				
	Local		resolution	Innovatio					
	Structur		transmission electron						
	e		microscopy, and in	the Core	1 1				
	Properti		situ/ex situ site-	Program	Tisean				
	es		selective, time-gated	[PN19-	u, C				
			luminescence	03];					
			spectroscopy, we	Swedish					

.			
show that wet	Research		
impregnation of	Council		
hafnia nanoparticles	(VR)Swe		
with 10% Eu oxide	dish		
followed by mild	Research		
calcination in air at	Council		
500 degrees C	[2014039		
produces an efficient	38]		
stabilization of the			
cubic phase,			
comparable to that			
obtained by bulk			
precipitation. The			
physical reasons			
behind the			
apparently			
conflictual data			
concerning the actual	1		
crystallographic			
phase and the local			
symmetry around the			
Eu stabilizer and			
how these can be			
mediated by			
luminescence			
analysis are also			
discussed.			
Apparently, the			
cubic crystal			
structure symmetry			
determined by XRD			
results in a			
pseudocubic/tetragor	1		
al local structure			
around Eu			
determined by			
luminescence.			
Considering the			
recent findings on			
wet impregnated			
CeO2 and ZrO2, it is			
concluded that			
family of oxides that			
CeO2, ZrO2, and HfO2 represent a unique case of a family of oxides that			

			is extremely tolerant to heavy doping by wet impregnation. In this way, the same batch of preformed nanoparticles can be doped with different lanthanide concentrations or with various lanthanides at a fixed concentration, allowing a systematic and reliable investigation of the effect of doping, lanthanide type, and lanthanide concentration on the various						
			functionalities of these technologically relevant oxides. We report studies of						
130.	anti-	<i>CURRENT</i> <i>APPLIED</i> <i>PHYSICS</i> , 19 , pp.651-656 (2019)	quasi-remanent polarization states in Pb0.99Nb0.02[(Zr0. 57Sn0.43)(0.94)Ti- 0.06](0.98)O-3 (PNZST) anti- ferroelectric ceramics and investigation of their relaxation effects using unique in-situ electrically activated time-resolved Synchrotron X-ray powder diffraction (SXPD) and Sn-119 Mossbauer Spectroscopy (MS). The SXPD patterns are consistent with a phase transition from quasi-tetragonal	EPSRCE ngineerin g & Physical Sciences Research Council (EPSRC) [EP/R02 8656/1]; DLS [EE1849 5]	Vopso n, MM; Tan, X; Namv ar, E; Belus ky, M; Thom pson, SP; Kuncs er, V; Plazao la, F; Unzue ta, I; Tang, CC	2.01	0.374	10.1016/j .cap.201 9.03.009	Q2

perovskite in 0 V
relaxed anti-
ferroelectric state to
rhombohedral
distortion in
ferroelectric state
under saturating
applied voltages of
+/-2 kV. The
observed quasi-
remanent
polarization
relaxation processes
are due to the fact
that tetragonal to
rhombohedral
distortion does not
occur at the applied
voltage required to
access the
quasiremanent
polarization states,
and the tetragonal
symmetry restored
after the removal of
the applied electric
field is preserved.
Since these quasi-
remanent
polarization states
were seen as
possibly suitable for
memory
applications, the
implications of this
study are that anti-
ferroelectrics are
more feasible for
multi-state dynamic
random access
memories (DRAM),
while their
application to non-
volatile memories
requires
development of more

131.	Enhanc ement in magneti c and dielectri c properti es of the rutheni um- doped copper ferrite(Ru - CuFe2 O4) nanopar ticles	JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,4 76 , pp.18-23 (2019)	sophisticated "read- out" protocols, possibly involving dc electrical biasing. Ruthenium-doped copper ferrite(Ru - CuFe2O4) nanoparticles (NPs) have been synthesized using a simple and cost- effective wet chemical co- precipitation deposition method. The crystallographic scanning electron microscopy images confirm cubic crystal structure and agglomerated-type surface appearance. The crystallite sizes are 6-24 nm in the range. Dielectric measurement analysis estimates the dielectric constant and loss of Ru - CuFe2O4 NPs. In this connection, dielectric constant and loss are reduced virtue of air annealing for various temperatures. Also, the dielectric loss confirms the relaxation peak. From magnetic measurement results, the coercivity decreases whereas saturation and remanence magnetization are		Manik andan, V; Kuncs er, V; Vasile , B; Kavita , S; Vigne selvan , S; Mane, RS	2.683	0.433	10.1016/j .jmmm.2 018.12.0 50	Q2
------	---	---	--	--	--	-------	-------	--	----

132.	Epitaxi al Non c-Axis Twin- Free Bi2Sr2 CaCu2 O8+ Thin Films for Future THz Devices	MATERIALS,1 2,1124 (2019)	growth is performed at two temperatures: Growth starts at 550- 600 degrees C and continues at 700-750	rants-in- Aid for Scientific Research (KAKEN HI)	K; Arisa wa, S; Badic	2.972	0.608	10.3390/ ma12071 124	Q2
			critical temperature of 37 and 32 K when	[28/01.09 .2016];					

133.	in	<i>RADIATION</i> <i>MEASUREME</i> <i>NTS</i> , 123 , pp.21-25 (2019)	[001] direction of the substrate. Twin-free non c-axis thin films are promising for fabrication of novel planar THz devices. The results of the present Q-band electron spin resonance (ESR) investigation on amber colored cubic boron nitride (cBN) crystalline superabrasive powder (BORAZON CBN400) offer further support to the hypothesis that impurity ions with high natural abundant zero nuclear spin isotopes, distributed non-uniformly, are involved in the structure of the observed paramagnetic centers. One could thus explain the absence of any hyperfine structure in the multifrequency electron spin resonance spectra of both presently and previously investigated cBN crystalline powders and single crystals. The scanning electron microscopy, cathodoluminescence and	Innovatio n (project PN-III- P4-ID- PCE- 2016) [152/201	Nistor , LC;	1.435	0.384	10.1016/j .radmeas. 2019.02. 003	
------	----	---	---	---	-----------------	-------	-------	---	--

			studies performed on single crystallites selected from the same cBN400 batch further confirm the presence of electro- and photo- luminescent active impurity related centers, non- uniformly distributed in the cBN crystallite host lattice. The observation of an intense and reproducible thermoluminescence spectrum, up to high radiation doses, attributed to several trapping centers involving impurities, is also reported here.						
134.	Structur e of defects in semico nductor crystalli ne cubic boron nitride. A microst ructural and micro analytic al investig ation	<i>RADIATION MEASUREME NTS</i> , 123 , pp.78-82 (2019)	spin resonance investigations correlated with data from cathodoluminscence and photoluminescence measurements have shown that impurity ions consisting mainly of isotopes with zero nuclear moments are involved in the structure of the observed paramagnetic point defects. In the present microstructural and compositional investigation we	Romania n Ministry of Research and Innovatio n [152/201 7]	, AM;	1.435	0.384	10.1016/j .radmeas. 2019.02. 019	Q2

			demonstrate that oxygen, carbon and silicon impurity atoms exhibiting low natural content of isotopes with non- zero nuclear spin are indeed present in cBN crystallites selected from amber coloured BORAZON CBN400 and CBN 500 super abrasive						
			powders, as well as in the black coloured BORAZON CBN1000 and CBN Type 1. It is also shown that aggregates of impurity atoms are present next to the extended cBN lattice defects, which could explain the non- uniform distribution of the electro- and opto-active impurities reported in a spectroscopy investigation.						
135.	Prototy pe Orthope dic Bone Plates 3D Printed by Laser Melting Deposit ion	<i>MATERIALS</i> , 1 2 ,906 (2019)	Laser melting deposition is a 3D printing method usually studied for the manufacturing of machine parts in the industry. However, for the medical sector, although feasible, applications and actual products taking advantage of this technique are only scarcely reported. Therefore,	21N/201 9]; CNCS- UEFISC	basu, D;	2.972	0.608	10.3390/ ma12060 906	Q2

			in this study,	/2017),	S;			
			Ti6Al4V orthopedic	PN-III-	Duta,			
			implants in the form	P1-1.1-	L;			
			of plates were 3D	TE-	Popes			
			printed by laser	2016-	cu, A			
			melting deposition.	2015				
			Tuning of the laser	(TE136/2				
			power, scanning	018),				
			speed and powder	PN-III-				
			feed rate was	P1-1.1-				
			conducted, in order	PD-				
			to obtain a	2016-				
			continuous	1568 (PD				
			deposition after a	6/2018)]				
			single laser pass and	[], _010)]				
			to diminish					
			unwanted blown					
			powder, stuck in the					
			vicinity of the					
			printed elements.					
			The fabrication of					
			bone plates is					
			presented in detail,					
			putting emphasis on					
			the scanning					
			direction, which had					
			a decisive role in the					
			3D printing					
			resolution. The					
			printed material was					
			investigated by					
			optical microscopy					
			and was found to be					
			dense, with no					
			visible pores or					
			cracks. The					
			metallographic					
			investigations and X-					
			ray diffraction data					
			exposed an unusual					
			biphasic alpha+beta					
			structure. The energy					
			dispersive X-ray					
			spectroscopy					
			revealed a					
			composition very					
L	1		r			 		

			similar to the one of the starting powder material. The mapping of the surface showed a uniform distribution of elements, with no segregations or areas with deficient elemental distribution. The in vitro tests performed on the 3D printed Ti6Al4V samples in osteoblast-like cell cultures up to 7 days showed that the material deposited by laser melting is cytocompatible.					
136.	Fabricat ion and charact erizatio n of Ru- doped LiCuFe 2O4 nanopar ticles and their capaciti ve and resistiv e humidit y sensor applicat ions	JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,4 74, pp.563-569 (2019)	Polycrystalline ruthenium-doped lithium-copper- ferrite (Ru - LiCuFe2O4)nanopart icles (NPs) are synthesized using a simple and cost- effective chemical co-precipitation method and annealed at different temperatures for increasing the crystallinity. The	Manik andan, V; Tudor ache, F; Petrila , J; Mane, RS; Kuncs er, V; Vasile , B; Morga n, D; Vigne selvan , S; Mirza ei, A	2.683	0.433	10.1016/j .jmmm.2 018.11.0 72	Q2

Raman spectra have
collectively
demonstrated the
presence of Ru in the
structure of Ru -
LiCuFe2O4 NPs.
The dielectric
properties of as-
synthesized Ru -
LiCuFe2O4 NPs are
investigated using
LCR meter where
the smaller NPs
demonstrates a
higher dielectric
constant. Also, the
results of magnetic
measurements of
annealed Ru -
LiCuFe2O4 NPs
have corroborated a
soft magnetic nature
due to the pinning
sites that endow
lower coercivity,
remanence and
saturation
magnetization than
that of the pristine
one. The variation of
permittivity and
electrical resistivity
with respect to
frequency under
humidity conditions
suggested that this
material has a
potential to use as
capacitive and resistive humidity
sensor. The results of
this study open the doors for utilization
doors for utilization
of metal-doped
magnetic ferrites for

 Behavi or of Molybd enum-Vanadi um Mixed Oxides in Selectiv e Oxidati on and Disprop ortionat ion of Toluene 137. 137	ns. definition of the second o
--	--

	,
orthorhombic -	
MoO3 and V2O5	
phases, as well as	
monoclinic -MoO3	
and V2MoO8	
phases, their	
abundance	
depending on the Mo	
to V ratio, while the	
TPD-NH3	
emphasized that, the	
total amount of the	
acid sites diminished	
with the increase of	
the Mo loading. The	
TPR investigations	
indicated that the	
samples with higher	
Mo/V ratio possess a	
higher reducibility.	
The main findings of	
this study led to the	
conclusion that the	
presence of strong	
acid sites afforded a	
high conversion in	
toluene	
disproportionation	
(Mo/V = 1), while a	
higher reducibility is	
a prerequisite to	
a prerequisite to accomplishing high	
1 0 0	
conversion in toluene	
oxidation $(Mo/V = 2)$. The set of last with	
2). The catalyst with	
Mo/V = 1 acquires	
the best yield to	
xylenes from the	
toluene	
disproportionation	
reaction, while the	
catalyst with $Mo/V =$	
0.33 presents the	
highest yield to	
benzaldehyde.	

138.	diate time	, ,	In this work, we theoretically model the time-dependent transport through an asymmetric double quantum dot etched in a two-dimensional wire embedded in a far-infrared (FIR) photon cavity. For the transient and the intermediate time regimes, the current and the average photon number are calculated by solving a Markovian master equation in the dressed-states picture, with the Coulomb interaction also taken into account. We predict that in the presence of a transverse magnetic field the interdot Rabi oscillations appearing in the intermediate and transient regime coexist with slower non-equilibrium fluctuations in the occupation of states for opposite spin	tanbul Universit y; Icelandic Research Fund [163082- 051]; Icelandic Infrastru cture Fund; Ministry of Science and Technolo gy of Taiwan Ministry of Science and Technolo gy, Taiwan [106- 2112-M- 239-001-	undss on, V; Gestss on, H; Abdul lah, NR; Tang, CS; Manol escu, A; Moldo veanu,	2.269	0.633	10.3762/ bjnano.1 0.61	Q2
	t through a photon		oscillations appearing in the intermediate and transient regime coexist with slower non-equilibrium fluctuations in the occupation of states	of Science and Technolo gy, Taiwan [106- 2112-M-	A; Moldo veanu,				

139.Passive magneti c shieldin g by machin able MgB2 bulks: measur ements and numeric al simulati ons	SUPERCOND UCTOR SCIENCE & TECHNOLOG Y, 32 ,034004 (2019)	difference between the steady-state correlation functions in the Coulomb blocking and the photon-assisted transport regimes. We report on a combined experimental and modelling approach towards the design and fabrication of efficient bulk shields for low-frequency magnetic fields. To this aim, MgB2 is a promising material when its growing technique allows the fabrication of suitably shaped products and a realistic numerical modelling can be exploited to guide the shield design. Here, we report the shielding properties of an MgB2 tube grown by a novel technique that produces fully machinable bulks, which can match specific shape requirements. Despite a height/radius aspect ratio of only 1.75, shielding factors higher than 175 and 55 were measured at temperature T = 20	T]; project 'Departm ents of	, G; Lavia no, F; Torsel lo, D; Bonin o, V; Trucc ato, M; Batalu , D; Grigor oscuta , MA; Burdu sel, M;	0.746	10.1088/ 1361- 6668/aaf 99e	Q2
		temperature $T = 20$ K and in axially- applied magnetic					

fields mu H-0(appl)
= 0.1 and 1.0 T,
respectively, by
means of cryogenic
Hall probes placed
on the tube's axis.
The magnetic
behaviour of the
superconductor was
then modelled as
follows: first we
used a two-step
procedure to
reconstruct the
macroscopic critical
current density
dependence on
magnetic field,
J(c)(B), at different
temperatures from
the local magnetic
induction cycles
measured by the Hall
probes. Next, using
these J(c)(B)
characteristics, by
means of finite-
element calculations
we reproduced the
experimental cycles
remarkably well at
all the investigated
temperatures and
positions along the
tube's axis. Finally,
this validated model
was exploited to
study the influence
both of the tube's
wall thickness and of
a cap addition on the
shield performance.
In the latter case,
assuming the
working temperature
of 25 K, shielding

Laser-induce synthe		factors of 10(5) and 10(4) are predicted in axial applied fields it mu H- 0(appl) = 0.1 and 1.0 T, respectively. A laser-based method was developed for the synthesis and simultaneous deposition of multicomponent hybrid thin layers consisting of nanoentities, graphene oxide (GO) platelets, transition metal oxide nanoparticles, urea, and graphitic carbon	Executiv e Unit for Financin g Higher Educatio n, Research , Develop ment and Innovatio n of the Romania n	Ivan, R·				
140. s and photoc talytic proper es of hybrid organic - inorgan ic compo ite layers	a <i>JOURNAL OF</i> <i>MATERIALS</i> <i>SCIENCE</i> , 54 , pp.3927-3941 (2019)	and graphitic carbon nitride (g-C3N4) for environmental applications. The photocatalytic properties of the layers were tested through the degradation of methyl orange organic dye probing molecule. It was further demonstrated that the synthesized hybrid compounds are suitable for the photodegradation of chloramphenicol, a widely used broad- spectrum antibiotic, active against Gram- negative bacteria. However, released in aquatic media represents a serious	Ministry of Educatio n and Scientific Research [PNIII- P2-2.1- PED- 2016- 1043]; Spanish Ministry of Economy , Industry and Competit iveness [ENE201 7-89210- C2-1-R];	R; Popes cu, C; del Pino, AP; Youse f, I; Logof atu, C; Gyorg y, E	3.442	0.558	10.1007/ s10853- 018- 3144-0	Q2

			• •	D					
			environmental	Economy					
			hazard, especially	and					
			owing to the	Competit					
			formation of	iveness,					
			antibiotic-resistant	through					
			bacteria. The	the					
			obtained results	"Severo					
			revealed that	Ochoa"					
			organic, urea	Program					
			molecules can	me for					
			become an	Centres					
			alternative to noble	of					
			metals co-catalysts,	Excellen					
			promoting the	ce in RD					
			separation and	[SEV-					
			transfer of	2015-					
			carriers in catalytic	5.201					
			composite systems.						
			Laser radiation						
			induces the reduction						
			of GO platelets and						
			the formation of						
			graphene-like						
			material. During the						
			same synthesis						
			process, g-C3N4 was						
			1 0						
			produced, by laser						
			pyrolysis of urea						
			molecules, without						
			any additional heat						
			treatment. The layers						
			exhibit high						
			photocatalytic						
			activity, being a						
			promising material						
			for photodegradation						
			of organic pollutants						
			in wastewater.						
	Zinc		In this study, ZnHAp	Romania	Predoi				
	Doped		layers deposited on a		, D;				
	Hydrox	CONTRICCO	Si substrate were	Ministry	Iconar			10.3390/	
141.	yapatite	<i>COATINGS</i> , 9 ,	obtained by a sol-gel	of	u, SL;	2.33	0.369	coatings9	Q2
	Thin	156 (2019)	spin-coating	Research				030156	
	Films		procedure. The	and	, MV;				
	Prepare		ZnHAp solutions	Innovatio					
	· · · · · · · · · · · · · · · · · · ·		r solutions		,				

	d by	used to obtain the	n	N;		
1	<u> </u>		n DCCDI			
	Sol-Gel	ZnHAp coatings	PCCDI-	Moteli		
	Spin Conting	were investigated by	UEFISC	ca-		
	Coating	dynamic light	DI [PN-	Heino,		
	Procedu	scattering (DLS)	III-P1-	M		
	re	analysis, zeta-	1.2-			
		potential, ultrasound	PCCDI-			
		measurements, and	2017-			
		flame atomic	0629,			
		absorption	43PCCD			
		spectrometry (AAS).	I/2018];			
		The average	Romania			
		measured	n			
		hydrodynamic	Ministry			
		diameter from the	of			
		DLS analysis, zeta-	Research			
		potential, and	and			
		ultrasound	Innovatio			
		measurements were	n			
		analyzed so as to	[21N/201			
		characterize and	9]			
		estimate the stability	7]			
		of the ZnHAp				
		nanoparticles. The				
		AAS results				
		confirmed the				
		presence of zinc in				
		the gels used in the				
		preparation of the				
		ZnHAp layers. The				
		layers were				
		investigated by X-				
		ray diffraction				
		(XRD) and scanning				
		electron microscopy				
		(SEM). The XRD				
		results revealed the				
		diffraction peaks of				
		the hexagonal				
		hydroxyapatite in all				
		of the investigated				
		samples. The				
		morphology of the				
		ZnHAp coatings				
		annealed at 500				
		degrees C (ZnHAp-				

		500) and 700 degrees C (ZnHAp-700), which evidenced that no fissures or cracks formed on the surface of the coatings. The biocompatibility assays indicated that the ZnHAp coatings did not present any toxicity towards the HeLa cells. Furthermore, the study regarding the cytotoxicity of the ZnHAp layers against microorganisms emphasized that ZnHAp coatings exhibited an inhibitory effect						
142. $\begin{vmatrix} s & as \\ Catalyst \end{vmatrix}$	<i>CHEMCATCH</i> <i>EM</i> , 11 , pp.985-990 (2019)	inhibitory effect towards S. aureus bacterial cells and also towards C. albicans fungal cells. N-doped, defective graphene obtained by	of Economy and Competit iveness [CTQ201 5-69153- CO2- R1]; Generalit at Valencia naGenera	Jurca, B; Bucur, C; Primo, A; Conce pcion, P; Parvul escu, VI; Garcia , H	4.495	0.991	10.1002/ cctc.2018 01984	Q2

			• • • ·						
			catalytic activity	o 2017-					
			compared to other	083];					
			related doped	UEFISC					
			defective graphenes	DI [PN-					
			derives from the	III-P4-					
			presence of pyridinic	ID-PCE-					
			N atoms that adsorbs						
			CO2 forming	0146,					
			carbamate-type	121/2017					
			adsorbates.	, PN-III-					
			udsorbutes.	P4-ID-					
				PCCF-					
				2016-					
				0088, DN 111					
				PN-III-					
				P1-1.2-					
				PCCDI-					
				2017-					
				0541];					
				IFTM;					
				Spanish					
				Ministry					
				of					
				Economy					
				and					
				Competit					
				iveness					
	Dhavaiaa		This research work is						
	Physica				Souli,				
			dedicated to study		M;				
	properti		structural,		Reghi				
	es		morphological,		ma,				
	investig		optical and		M;				
	ation of		photoluminescence		Secu,				
	samariu	SUPERLATTI	properties of		M;				
	m	CES AND	samarium doped		Bartha			10.1016/j	
	doped	MICROSTRUC	calcium sulfate						
143.	calcium		(CaSO4) thin films		, C;	2.385	0.342	.spmi.20	Q2
	sulfate	<i>TURES</i> , 126 ,	after exposure to		Encul			18.12.02	
	thin	pp.103-119	high gamma		escu,			1	
	films	(2019)	radiations.		M;				
	under		Polycrystalline		Mejri,				
	high		doped CaSO4 thin		A;				
	gamma		films have been		Kamo				
	irradiati				un-				
			grown on glass		Turki,				
	ons for space		substrates by spray pyrolysis technique		N;				
			DUROLUCIC TOOPDICULO			1	1		

photovo	and irradiated at	Badic	
ltaic	different high	a, P	
and	gamma doses 3, 7,		
dosimet	15 and 40 kGy.		
ric	Physical		
applicat	characterization of		
ions	irradiated thin films		
	has been made by X-		
	ray diffraction,		
	Spectrophotometer,		
	Scanning Electron		
	Microscope, Energy		
	Dispersive		
	Spectroscopy,		
	Fluorescence		
	Spectrometer and		
	Thermoluminescence		
	. The most		
	remarkable result, as		
	shown by structural		
	analysis, is the		
	increase of grain size		
	from 52 to a		
	maximum value of		
	93 nm for 15 kGy		
	gamma dose which		
	indicates a clear		
	enhancement in		
	crystal structure by		
	gamma irradiation.		
	Moreover, the		
	preferred orientation		
	has been		
	immediately changed		
	from (102) plan to		
	(100) just after the		
	first 3 kGy gamma		
	dose. SEM		
	micrographs of		
	irradiated thin layers		
	show deep		
	modifications in		
	surface morphology.		
	Optical transmission		
	spectra have shown a		
	sharp and intense		

1	
peak at 350 nm	
wavelength. Band	
gap energy has been	
slightly decreased	
from 3.9 eV before	
irradiation to 3.6 eV	
for 40 kGy. A new	
and strong energy	
level noted E r, has	
been emerged and	
created due to high	
gamma irradiations	
in addition to the	
principal one relative	
to band gap energy.	
Other parameters	
like absorption and extinction	
coefficients and	
refractive index have	
been determined.	
Thermoluminescence	
data show a high	
sensibility to gamma	
radiations doses	
which offer	
opportunities for	
dosimetry	
applications. These	
experimental results	
suggest the use of	
irradiated samarium	
doped calcium	
sulfate as optical	
window for space	
photovoltaic devices	
where gamma rays	
are abundant. These	
results are also	
helpful for	
researchers using	
CaSO4 thin films	
near nuclear	
apparatus (nuclear	
reactors and particle	
accelerators) or those	

144.	Naturall y- Derived Biphasi c Calciu m Phosph ates through Increas ed Phosph orus- Based Reagent Amount s for Biomed ical Applica tions	<i>MATERIALS</i> , 1 2 ,381 (2019)	interested in studying interaction between radiations and condensed matter. Calcium carbonate from marble and seashells is an eco- friendly, sustainable, and largely available bioresource for producing natural bone-like calcium phosphates (CaPs). Based on three main objectives, this research targeted the: (i) adaptation of an indirect synthesis route by modulating the amount of phosphorus used in the chemical reaction, (ii) comprehensive structural, morphological, and surface characterization, and (iii) biocompatibility assessment of the synthesized powdered samples. The morphological characterization was performed on digitally processed scanning electron microscopy (SEM) images. The complementary 3D image augmentation of SEM results also allowed the quantification of roughness parameters. The	Romania n Ministry of Research and Innovatio n, CCCDI- UEFISC DI [PN- III-P1- 1.2- PCCDI- 2017- 0062, 58, 2]	Maida niuc, A; Micul escu, M; Anton iac, IV; Ciocoi u, RC; Voicu, SI; Mitra		0.608	10.3390/ ma12030 381	Q2
------	--	---	---	--	--	--	-------	----------------------------	----

	results revealed that	
	both morphology and	
	roughness were	
	modulated through	
	the induced variation	
	of the synthesis	
	parameters.	
	Structural	
	investigation of the	
	samples was	
	performed by Fourier	
	transform infrared	
	spectroscopy and X-	
	ray diffraction.	
	Depending on the	
	phosphorus amount	
	from the chemical	
	reaction, the	
	structural studies	
	revealed the	
	formation of biphasic	
	CaPs based on	
	hydroxyapatite/brush	
	ite or	
	brushite/monetite.	
	The in vitro	
	assessment of the	
	powdered samples	
	demonstrated their	
	capacity to support	
	MC3T3-E1 pre-	
	osteoblast viability	
	and proliferation at	
	comparable levels to	
	the negative	
	cytotoxicity control	
	and the reference	
	material (commercial	
	hydroxyapatite).	
	Therefore, these	
	samples hold great	
	promise for	
	biomedical	
	applications.	
1		

145.	Spirobif luorene -based Porous Organic Polyme rs as Efficien t Porous Support s for Pd and Pt for Selectiv e Hydrog enation	<i>CHEMCATCH</i> <i>EM</i> , 11 , pp.538-549	Spirobifluorene- based porous organic polymers (POP) were synthesized following two different protocols; the acetylenic coupling reaction conditions and the Sonogashira cross- coupling reaction. These were utilized as support for the hydrogenation of a series of species containing unsaturated C=C and C=O bonds (4- nitrostyrene, 4- bromobenzophenone , acetophenone, 7- nitro-1-tetralone and 1,2-naphtoquinone confirmed their efficiency). POP1 prepared via a copper-catalysis protocol was completely inactive, while POP2-4 containing residual Pd exhibited different activities in accordance to the accessibility of the substrates to the metal. Further deposition of 0.5wt% Pd led to active and stable catalysts. They were easily separated by filtration, and after re-dispersion, afforded the same performances for ten successive cycles.	CCDI- UEFISC DI [PN- III-P2- 2.1-PED- 2016- 0349]	Trand afir, MM; Pop, L; Hadad e, ND; Hriste a, I; Teodo rescu, CM; Krum eich, F; van Bokho ven, JA; Grosu, I; Parvul escu, VI	4.495	0.991	10.1002/ cctc.2018 01247	Q2
------	--	---	---	---	---	-------	-------	--------------------------------	----

			This study also evidenced the specific role of the support in these reactions by comparing the behavior of Pd/POP with that of a Pd/C catalyst with the same loading of palladium. The deposition of Pt on these supports led to sub-nanometric particles and, in accordance, to a different catalytic behavior reflected merely by differences in the selectivity.						
146.	Structur al charact erisatio n and thermal stability of SnSe\G aSb stacked films	PHILOSOPHI CAL MAGAZINE, 99 , pp.55-72 (2019)	We have investigated the effect of thermal annealing on the structure of single and stacked phase change memory films based on SnSe and GaSb. Samples were prepared by pulsed laser deposition and investigated by X-	Unitatea Executiv a pentru Finantare a Invatama ntului Superior, a Cercetari i, Dezvolta rii si Inovarii [PN-II- RU-TE- 2014-4- 0498]	Sava, F; Borca, CN; Galca, AC; Socol, G; Groli mund, D; Mihai, C; Velea, A	1.855	0.515	10.1080/ 1478643 5.2018.1 529442	Q2

films, respectively.	
Above the transition	
temperature, GaSb	
crystallises into a	
face-centered cubic	
structure, whereas	
SnSe has an	
orthorhombic	
arrangement.	
Annealing at three	
temperatures (160	
degrees C, 250	
degrees C and 350	
degrees C) of the $S_{2} S_{2} C_{2} S_{3}$ degrees C	
SnSe\GaSb stacked	
films promotes bond	
breaking, atom	
diffusion between	
the two layers and	
formation of new	
phases. At 160	
degrees C, GaSb	
films crystallise	
partially and no	
effect is observed on	
the crystallinity of	
SnSe films. After	
250 degrees C,	
rhombohedral SnSb	
emerges in addition	
to GaSb complete	
crystallisation. A	
major, completely	
· · ·	
new, body-centered	
orthorhombic	
unindexed	
quaternary Ga-Sn-	
Sb-Se phase	
formation was	
observed in the	
samples annealed at	
350 degrees C. The	
GaSb crystallites are	
fully dissolved and	
we have observed	
the formation of a	

			minor hexagonal SnSe2 phase. The analysis of EXAFS data, measured at Se and Ga K-edges, revealed changes in the local atomic environment as a function of the annealing temperature. A tetrahedral configuration is obtained for the Ga atoms in both as- deposited and annealed samples, whereas Se is mostly bivalent in the amorphous samples and has an octahedral arrangement in crystalline SnSe. Our results show that inter-layer diffusion should always be considered and evaluated when designing memory cells composed of stacked phase change chalcogenide films.					
147.	TAILO RING SP2/SP 3 RATIO IN DIAM OND- LIKE CARB ON FILMS VIA	<i>ROMANIAN REPORTS IN PHYSICS,71,4 14 (2019)</i>	Tailoring sp(2)/sp(3) ratio in diamond-like carbon thin films offers new surface engineering solutions for the continuously increasing devices requirements in various fields. We report here the control of sp(2)/sp(3) carbon content using the high voltage	n National Authorit y for Scientific Research and Innovatio n,	escu, M; Anghe l, A; Surdu -Bob, CC;	1.94	0.296	Q2

	DEPOS ITION PARA METE RS IN A HIGH VOLT AGE ANODI C VACU UM PLAS MA		anodic plasma in vacuum. Correlation of data obtained by visible Raman Spectroscopy and XPS spectra of our DLC films with deposition parameters showed an increase in sp(3) bonding of about 10% when decreasing the discharge voltage from 600 V to 200 V or increasing the anode-substrate distance from 15 cm to 36 cm.	[16N/8.0 2.2019]				
148.	PHOT O- ELECT RICAL PROPE RTIES OF THIN FILMS WITH GE NANO PARTI CLES EMBE DDED IN TIO2 MATRI X	<i>ROMANIAN</i> <i>REPORTS IN</i> <i>PHYSICS</i> , 71 ,5 04 (2019)	We present photo- electrical properties of thin films formed of Ge nanoparticles in TiO2 correlated with structure and morphology. The films co-deposited on Si using magnetron sputtering were annealed in conventional oven at 550 degrees C. We performed structure investigations by X- ray diffraction, transmission electron microscopy and measured current- voltage characteristics in dark and under illumination at different temperatures. We show that the films are formed of cubic	and Innovatio n through NIMP Core Program	lache	1.94	0.296	Q2

		Ge nanoparticles in nanostructured anatase TiO2 matrix. Also, (TiGe)O-2 with rutile structure was observed. The films have high photosensitivity under white light as the ratio between photo- and dark currents (-1 V) is of similar to 10(2).						
149. 149.	MATERIALS SCIENCE AND ENGINEERIN G B- ADVANCED FUNCTIONAL SOLID-STATE MATERIALS,2 40, pp.7-15 (2019)	microstructure,	Romania n Ministry of Research [PN18- 110101]	Cerne a, M; Vasile , BS; Ciuchi , IV; Surdu, VA; Bartha , C; Iuga, A; Galizi a, P; Galass i, C	3.507	0.495	10.1016/j .mseb.20 19.01.00 1	Q2

								1	
			(Pr) of similar to 7.7						
			mu C/cm(2) and,						
			remanent						
			magnetization (Mr)						
			of 24 emu/g at 5 K						
			and of 14 emu/g, at						
			room temperature.						
			The present study						
			reveals that the						
			ferroelectric,						
			piezoelectric and						
			1						
			magnetic properties						
			of this new						
			architectured						
			composite depend on						
			the amount of each						
			component and, can						
			be tailored by						
			adjusting their						
			synthesis conditions.						
			BNT-						
			BT0.08/CoFe2O4						
			core-shell material						
			investigated in this						
			work provides a						
			novel way to exploit						
			new applications for						
			the multifunctional						
			composite, such as						
			piezoelectric sensor,						
			magnetoelectronic						
			sensors and data						
			storage devices.						
	Pulsed		Indium tin oxide	Romania	Socol,				
	Laser		(ITO) thin films	n	M;				
	Deposit		were grown on	Ministry	Preda,				
	ion of		nanopatterned glass	of	N;				
	Indium		substrates by the	Research					
	Tin		pulsed laser	and	a, O;			10.3390/	
150.	Oxide	COATINGS,9,	deposition (PLD)	Innovatio		2.33	0.369	coatings9	02
1.50.	Thin	19 (2019)	technique. The	n through		2.55	0.507	010019	×~
	Films		deposition was	National	1			010017	
			carried out at 1.2		1				
	on Nonono			Core	ulescu				
	Nanopa		J/cm(2) laser	Program	, A;				
	tterned Glass		fluence, low oxygen	[PN18-	Breaz				
1	14 11	1	pressure (1.5 Pa) and	⊨ INTN11+	u, C;	1	1	1	1

Substrat	on unheated	Romania	Ghere		
es	substrate. Arrays of	n	ndi, F;		
	periodic pillars with	Ministry	Socol,		
	1 I I I I I I I I I I I I I I I I I I I	of	G		
	350 nm, heights of	Research			
	<u> </u>	and			
	and separation	Innovatio			
	-	n through			
	1100 nm were	National			
	fabricated on glass	Core			
	substrates using UV	Program			
	nanoimprint	from			
	lithography (UV-	LAPLAS			
		V			
		contract			
	throughput technique	[3N/2018			
	used to fabricate];			
	nanopatterns on large	Romania			
	areas. In order to	n			
	emphasize the	Ministry			
	influence of the	of			
	periodic patterns on	Research			
		and			
	nanostructured ITO	Innovatio			
	films, this	n through			
	transparent	National			
	conductive oxide	Core			
	(TCO) was also	Program			
	grown on flat glass	from			
	substrates.	ROSA			
	Therefore, the	STAR			
	structural,	contract			
	compositional,	[179/201			
	morphological,	7]			
	optical, and electrical				
	properties of both				
	non-patterned and				
	patterned ITO films				
	were investigated in				
	a comparative				
	manner. The energy				
	dispersive X-ray				
	analysis (EDX)				
	confirms that the				
	ITO films preserve				
	the In2O3:SnO2				

			weight ratio from the						
			solid ITO target. The						
			SEM and atomic						
			force microscopy						
			(AFM) images prove						
			that the deposited						
			ITO films retain the						
			pattern of the glass						
			substrates. The						
			optical investigations						
			reveal that patterned						
			ITO films present a						
			good optical						
			transmittance. The						
			electrical						
			measurements show						
			that both the non-						
			patterned and						
			patterned ITO films						
			are characterized by a low electrical						
			resistivity ($<2.8 \text{ x}$						
			10(-4)). However, an improvement in the						
			Hall mobility was						
			achieved in the case						
			of the nanopatterned						
			ITO films,						
			evidencing the						
			potential applications						
			of such						
			nanopatterned TCO						
			films obtained by						
			PLD in photovoltaic						
			and light emitting						
			devices.						
	Room		Manganese is	Romania	Bucur.				
	tempera		deposited at high	n	IC;				
	ture		temperature on (001)	Ministry	Apost				
	ferroma	THIN SOLID	oriented ferroelectric	for	ol,			10 1010	
151	gnetism	<i>FILMS</i> , 669 ,	lead zirco-titanate	Research	NG;	1 000	0 224	10.1016/j	
151.	0	pp.440-449	prepared in two	and	Abra	1.888	0.324	.tsf.2018.	$ \mathbf{V}^2 $
	correlat		different ways:	Innovatio	miuc,			11.018	
	ion to		sputter-annealed or	n through	LE;				
	ferroele		just simply annealed	the	Tanas				
	ctricity		in ultrahigh vacuum.	NIMP	e, LC;				

of	Room temperature	[PN18-	Tache,		
mangan	ferromagnetism	-	CA;		
ese	(FM) is obtained for	:	Lungu		
embedd	Mn deposited on	UEFISC	, GA;		
ed in	sputter-annealed	DI	Costes		
lead	substrates, while for	Agency	cu,		
zirco-	the other sample	[PN-III-	RM;		
titanate	preparation a	P1-1.1-	Chiril		
	paramagnetic	PD-	a, CF;		
	behaviour is	2016-	Trupi		
	obtained. Also, for	1322,	na, L;		
	the first case a clear	PN-III-	Pintili		
	inwards component	P1-1.2-	e, L;		
	of the polarization P(Teodo		
	-) is observed by X-	2017-	rescu,		
	ray photoelectron	0152,	CM		
	spectroscopy and	75PCCD			
	piezoresponse force	I/2018]			
	microscopy.	-			
	Composition				
	analysis evidenced				
	formation of Pb				
	vacancies in the case				
	of FM - P((-)				
)sample, consistent				
	with hole formation				
	near the surface,				
	needed both to				
	stabilize the inwards				
	polarization state and				
	to intermediate				
	ferromagnetism				
	between Mn2+ ions.				
	The indirect				
	exchange				
	ferromagnetism				
	mediated by holes is				
	stronger, most				
	probably because the				
	interaction energy is				
	proportional with the				
	carrier effective				
	mass. Also, whereas				
	in the case of				
	unsputtered substrate				
	 a stable surface Mn				

		oxide is formed, defect formation by sputtering seems to favor Mn migration inside the sample. This also induces the formation of a thin film where ferromagnetism and the orientation of ferroelectric polarization might have the same origin, i. e. holes accumulated near the outer surface.						
- <u>-</u>	APPLIED PHYSICS A- MATERIALS SCIENCE & PROCESSING, 125 ,815 (2019)	Latest developments in the field of high power ultra-short pulse lasers have led to intensive studies dedicated to the fabrication possibility of new antireflective coatings which exhibit high damage threshold. Therefore, this study is focused on the deposition and characterization of metal oxide heterostructures followed by laser- induced damage threshold tests which evidence their application in high power laser optics. Al2O3, SiO2, and HfO2 layers are combined to obtain different heterostructures, i.e. HfO2/Al2O3/HfO2/ Al2O3/HfO2 and	Research ; CNCS- UEFISC DI [PN- II-PT-	Filipe scu, M; Palla- Papav lu, A; Berce a, A; Rusen , L; Cernai anu, MO; Ion, V; Calug ar, A; Nistor , LC; Dines cu, M	1.784	0.308	10.1007/ s00339- 019- 3110-y	Q3

	HfO2/SiO2/HfO2/Si	2017-		
	O2/HfO2. The metal	0172];		
	oxide	Extreme		
	heterostructures are	Light		
	deposited in a	Infrastru		
	controllable oxygen	cture		
	atmosphere, either at	Nuclear		
	room temperature or	Physics		
	high temperatures	(ELI-NP)		
	(600 degrees C) by	Phase II;		
	pulsed laser	Romania		
	deposition (PLD).	n		
	The morphological,	Governm		
	structural and optical	ent;		
	properties of the as-	European		
	deposited	Union		
	heterostructures are	through		
	first investigated.	the		
	Atomic force	European		
	microscopy and	Regional		
	spectroscopic	Develop		
	ellipsometry	ment		
	investigations reveal	FundEur		
	a lower roughness of			
	the heterostructures	Union		
	based on	(EU)		
	HfO2/Al2O3 layers	[1/07.07.		
	grown at 600 degrees	2016,		
	C as compared to	1334];		
	those grown at room	European		
	temperature.	Union		
	Furthermore,	through		
	following the laser-	Competit		
	induced damage	iveness		
	threshold (LIDT)	Operatio		
	tests carried out with	nal		
	a Ti-Sapphire laser,	Program		
	higher LIDT values	me		
	are obtained for the	[1/07.07.		
	HfO2/Al2O3-based	2016,		
	heterostructures than	1334]		
	for the HfO2/SiO2-			
	based			
	heterostructures. The			
	ability to control the			
	morphological and			

		structural properties of the antireflective coatings by modifying the deposition parameters of the metal oxide heterostructures demonstrates that PLD is a suitable technique for the manufacturing of antireflective coatings for high power ultra-short laser systems.						
Charge Transfe r from Alq(3)- 5Cl to Graphe ne 153. Oxide in Donor- Accept or Heteros tructure s	JOURNAL OF ELECTRONIC MATERIALS,4 8, pp (2019)	an alternative active layer for the solar cells based on the organometallic compounds in two configurations: bulk heterojunction and donor/acceptor junction between the organometallic compounds as the electron donor and carbon-based layer as the electron	Romania n National Authorit y for Scientific Research , CNCS- UEFISC DI Core Program [PN19- 03, 21 N/08.02. 2019]	Polosa n, S; Ciobo taru, CC; Ciobo taru, IC	1.676	0.273	10.1007/ s11664- 019- 07531-w	Q3

			active layer. In the					
			bulk heterojunctions,					
			the exciton diffusion					
			length could be					
			extended to 100 nm					
			which allows a better					
			efficiency then					
			bilayer structures.					
			The photoconductive					
			behaviors of these					
			two configurations					
			have shown the					
			superiority of the					
			bulk heterojunctions,					
			increasing the					
			intensity of the					
			measured					
			photocurrent. The					
			redshift of the					
			photoluminescence					
			of Alq3-5Cl in the					
			bulk heterojunctions					
			reveals a better					
			charge transfer					
			towards the acceptor					
			layer, in this case,					
			formed from					
			graphene oxide. The					
			alternative of					
			organometallic					
			compounds as donor					
			materials ensures a					
			better thermal and					
			chemical stability					
			compared with other					
			organic materials					
			like perovskites.					
	EXDED	PROCEEDIN	Barium strontium	Romania	Banci			
		GS OF THE	titanate (BST)	n				
	AL	ROMANIAN	ferroelectric layers		u, MG;			
		ACADEMY	were deposited on	Authorit	Nedel			
154.		SERIES A-	high resistivity Si	y for	cu, L;	1.402	0.24	Q3
1.34.		SERIES A- MATHEMATI		-		1.402	0.24	עי
		CS PHYSICS	substrates by Pulsed	Scientific Research				
			Laser Deposition and		1			
		TECHNICAL	Radio Frequency	and	Hrib,			
	NSE	SCIENCES	sputtering. The	Innovatio	L;			

	FROM	INFORMATIO	stoichiometry was	n,	Geam				
		N	measured by using	Program	basu,				
		SCIENCE,20,	the Rutherford	me for	DC;				
			Backscattering	Space	DC, Trupi				
	RIC	pp.353-360	-						
		(2019)	technique at 3.041	Technolo					
	AND		MeV. For sub-THz	gy and	Pantel				
	DIELE		measurements of Si	Advance					
	CTRIC		samples, a new	d	Mihai,				
	MATE		resonant method	Research	· ·				
	RIALS		placing the sample	- STAR	Tani,				
			between two flanged		Μ				
			waveguides is	2016					
			proposed. In the THz	MCOAT					
			range, the Time	ANT,					
			Domain	134/2018					
			Spectroscopy proved];					
			to be a reliable	Romania					
			method. Both	n					
			methods show	National					
			effects due to the	Authorit					
			dielectric losses of	y for					
			BST in that	Scientific					
			frequency range.	Research					
			frequency range.	and					
				Innovatio					
				n,					
				CCCDI -					
				UEFISC					
				DI within					
				PNCDI					
				III					
				[61/2016					
]					
	k-		Angle-resolved	Swiss	Stroco				
	resolve		photoelectron	Excellen	v,				
	d		spectroscopy	ce	VN;				
	electron	JOURNAL OF	(ARPES) is the main		Lev,				
	ic	ELECTRON	(ARPES) is the main experimental tool to		Lev, LL;				
		SPECTROSCO		10				10.1016/j	
155	structur	PY AND	explore electronic	ESKAS	Kobay	1 242	0 5 4 4	.elspec.2	$ _{\Omega^2}$
155.	e of	RELATED	structure of solids	[2015.02	ashi,	1.343	0.544	019.06.0	Q3
	buried	PHENOMENA	resolved in the	57];	M;			09	
	heterost	, 236 , pp.1-8	electron momentum	Swiss	Cance				
	ructure	(2019)	k. Soft-X-ray	National	llieri,				
	and	(=01)	ARPES (SX-	Science	C;				
	impurit		ARPES), operating		Husan				
	у	1	in a photon energy	onSwiss	u,		1	1	1

01	ystems	range around 1 keV,	National	MA;		
		benefits from	Science	Chiki		
		enhanced probing		na, A;		
	-	depth compared to		Schrot		
A		1 1	ON (CNICE)			
		the conventional	(SNSF)	er,		
		VUV-range ARPES,	[200021_	NBM;		
		and	165529,	Wang,		
		elemental/chemical	200021_	X;		
		state specificity				
		achieved with	Japan	er, JA;		
		resonant	Society	Salma		
		photoemission.	for the	n, Z		
		These advantages	Promotio			
		make SX-ARPES	n of			
		ideally suited for	Science			
		buried	Ministry			
		heterostructure and	of			
		impurity systems,	Educatio			
		which are at the heart	n,			
		of current and future	Culture,			
		electronics. These	Sports,			
		applications are	Science			
		illustrated here with	and			
		a few pioneering	Technolo			
		results, including	gy, Japan	1 1		
		buried quantum-well	(MEXT)			
		states in	Japan			
		semiconductor and	Society			
		oxide	for the			
		heterostructures,	Promotio			
		their bosonic	n of			
		coupling critically	Science			
		affecting electron	Science			
		transport, magnetic				
		impurities in diluted				
		magnetic				
		semiconductors and				
		topological				
		materials, etc. High				
		photon flux and				
		detection efficiency				
		are crucial for				
		pushing the SX-				
		ARPES experiment				
		to these most				
		photon-hungry cases.				

156.	Effect of slow charged 90 keV Ne8+ ions on zinc ferrite nanopar ticles	MATERIALS RESEARCH EXPRESS, 6 ,09 5077 (2019)	The present work reports on the effect of slow charged ions irradiation on the structural and magnetic properties of zinc ferrite nanoparticles obtained by coprecipitation method. Results from both the x-ray and Fourier Transform Infrared Spectroscopies confirm the formation of the spinel phase. The structural investigation using x-rays reveals no significant impurity peak and a crystallite size of 9 nm. Particle size of 9 nm. Particle size of 9 nm. Particle size of pristine sample is determined to be around 9 nm. Crystallinity and magnetic properties of ferrite sample investigated before and after irradiation process show that electronic excitations inside the material alter the magnetic parameters. Mossbauer Spectroscopy measurements indicate that a fluence of 3*10(14) ions cm(-2) Ne8+ ions of 90 keV are sufficient to induce cation redistribution	Romania n Space Agency (ROSA) within Space Technolo gy and Advance d Research (STAR program) [169/20.0 7.2017]	Trand afir, EV; Caltun , OF; Ciocar lan, R; Pui, A; Hemp elman n, R; Diama ndesc u, L; Cerve ra, S; Trassi nelli, M; Vernh et, D	1.449	0.236	10.1088/ 2053- 1591/ab3 174	Q3
------	---	---	---	--	---	-------	-------	--------------------------------------	----

157.	Structur al and electron ic properti es of the alpha- GeSe surface	SURFACE SCIENCE, 686 , pp.17-21 (2019)	into zinc ferrite nanoparticles. We have investigated the structural and electronic properties of the alpha-GeSe surface using atomic force microscopy, scanning tunneling microscopy and density functional theory calculations. GeSe belongs to the group-VI transition metal monochalcogenides and occurs in two polymorphs, alpha- GeSe and beta-GeSe. The most redundant polymorph, alpha- GeSe, has a structure that is very similar to black phosphorene. The alpha-GeSe surface has a centered rectangular unit cell with dimensions a = 3.8 angstrom and b = 4.4 angstrom, respectively. In scanning tunneling microscopy images only the Se atoms are resolved owing to the substantial transfer of electrons from the Ge to the Se surface atoms. This experimental finding is fully in line with density functional theory calculations.	China Scholars hip CouncilC hina Scholars hip Council; Nederlan dse organisat ie voor Wetensc happelijk Onderzo ek (NWO)N etherland s Organiza tion for Scientific Research (NWO)	Yao, QR; Balesc u, LM; Liu, QJ; Bin, T; Zandv	1.849	0.46	10.1016/j .susc.201 9.03.007	
			•						

		that the alpha-GeSe surface is a p-type semiconductor with a band gap of 1.0 eV. The GeSe surface is stable at ambient conditions, which makes this material very appealing for technological applications. The influence of the injection of minority	State					
Intersti ial 158. Comple x in	i PHYSICA STATUS SOLIDI A- APPLICATIO NS AND MATERIALS SCIENCE, 216 , 1900354 (2019)	charge carriers on the formation of a divalent bistable defect (DBH) having two energy levels of E-v + 0.44 eV and $E-v + 0.53 eV$ in its metastable configuration is investigated. Using forward current injection, the formation temperature of this defect in p-type silicon can be lowered by about 50	Research Program of the Republic of Belarus "Physical material science, new materials and technolo gies"; European UnionEu ropean UnionEu ropean UnionEu ropean UnionEu ropean UnionA (EU) [654168] ; National Ministry of Research and Innovatio n [PN19- 03]; IFA- CERN-	Makar enko, LF; Lasto vski, SB; Yakus hevich , HS; Gauba s, E; Pavlo v, J; Kozlo vski, VV; Moll, M; Pintili e, I	1.606	0.371	10.1002/ pssa.201 900354	Q3

	bistable hole traps and a metastable electron trap observed earlier. It is concluded that these traps are related to metastable and stable configurations of the DBH defect, which has inverse occupancy level ordering in its stable configuration.					
159. Surver I Nanopa rticles: I	Nano-size and shape of fluorescent silver nanostructures are important for a wide range of bio- applications, especially as drug delivery systems, imaging and sensing. The aim of the work is to develop a fluorescent silver nano-structured system, synthesized by chemical reduction of aqueous AgNO3 solution by Tryptophan using Dextran 70 as stabilizing agent (SNPs(FL)). The formed fluorescent nano-system was analyzed by UV-Vis absorption, DLS, SEM, TEM, AFM, steady-state and time resolved fluorescence spectroscopy. TEM analysis showed multi-twined nanoparticle, with	Voice scu, M; Ionesa u, S; Calde on- Moren o, JM Teodo rescu, VS; Anast asescu , M; Culita DC	r n ; 1.913	0.269	10.1007/ s10895- 019- 02411-2	Q3

			the size within 15-40 nm. SNPs(FL) shows the fluorescence emission at 346 nm, the fluorescence quantum yield, phi = 0.034 and the integrated fluorescence lifetime, = 1.82 ns. Riboflavin fluorescence behaviour in the RF/SNPs(FL) system, has been also studied. The results have relevance in using SNPs(FL) as a potential marker/emissive system to solve various biological						
			barriers in humans, like drug release and protein structure.						
160.	ium Green's	PHYSICA STATUS SOLIDI B- BASIC SOLID STATE PHYSICS, 256 , 1800447 (2019)	is considered. Initially, the system is at thermal equilibrium. At some instant t(0) the	P4-ID- PCE- 2016- 0084]; Romania	Corne an, HD; Moldo veanu, V; Pillet, CA	1.454	0.413	10.1002/ pssb.201 800447	Q3

			establish a closed formula for the associated proper interaction self- energy.	\ Natural Sciences Det Frie Forsknin gsrad (DFF) [4181- 00042]; ANR, Grant NONST OPSFren ch National Research Agency (ANR) [ANR- 17- CE40- 0006]					
161.	GO Compo sites:	PHYSICA STATUS SOLIDI B- BASIC SOLID STATE PHYSICS, 256 , 1800392 (2019)	The paper deals with a study of composites based on poly(p- phenylenevinylene) (PPV) and reduced graphene oxide (RGO) in terms of photoconductivity and photocurrent (PC) dynamics in charge-discharge cyclic processes. The explanation for the photoconductive behavior is built with the support of DeVore and Onsager theories. Scanning samples in both directions involves charge transport, to and from, available energy states called defect centers. The	Romania n National Authorit y for Scientific Research by Core Program me [PN18- 110101]	Ilie, M; Drago man, D; Baibar ac, M	1.454	0.413	10.1002/ pssb.201 800392	Q3

	existence of these centers is confirmed by a decrease in the composite bandgap caused by the RGO localized states which are situated slightly above the first HOMO level in the PPV bandgap. The contribution of RGO to the photoconductive properties of PPV is revealed through a photocurrent value with two orders of magnitude higher than for PPV.					
Anneali ng of preexist ing defects silicon single crystals by ion irradiati Anneali NS ME PH SEA NS NS MA ANN ANN ANN ANN	The annealing of crystalline defects in Si single crystals created by ion implantation at room temperature was investigated. SiliconVCLEAR STRUMENT STRUMENT STRUMENT STRUMENT SCARCH CTION B- TOUT SIN SEARCH CTION B- TOUT SIN SEARCH CTION B- TOUT SIN TERACTIO TERACTIO TERACTIO TOUT temperature was at/cm(2) to induce damage. A second implantation at room temperature was afterwards s5-89	Minai, MD; Ionesc u, P; Pantel ica, D; Petras cu, H; Craciu n, D; Craciu n, V; Vasili u, F; Vasile , BS; Merci	1.21 (0.362	10.1016/j .nimb.20 18.09.00 5	Q3

			random and						
			channeling geometry						
			to assess the						
			crystalline damage						
			present in the surface						
			region. The results						
			showed a significant						
			reduction of the						
			degree of damage or						
			a reduction of the						
			size of damaged						
			region. The						
			morphology and						
			local atomic						
			structure, studied						
			using high -						
			resolution electron						
			microscopy, selected						
			area electron						
			diffraction and high						
			resolution X-ray						
			diffraction confirmed						
			the reduction of						
			damage degree and						
			volume caused by						
			Au implantation after						
			Co implantation.						
			-	Morocca	Darka				
	Structur		In this work, the						
	al and		effect of deposition	n M ¹	li, S;				
	optical		time on the structural		Noune				
	properti		and optical	of Higher					
	es of		properties of ZnO	Educatio					
	ZnO		films deposited by	n and	AC;				
	thin	OPTICAL	Ultrasonic Spray	Research					
	films	AND	Mist-CVD was	;	mi,			10.1007/	
	grown	QUANTUM	studied aiming the	CNRST,	ME;			s11082-	
163.	by	ELECTRONIC	application in	Project	Secu,	1.547	0.21	019-	Q3
	rapid	<i>S</i> , 51 ,210	perovskite solar	[PPR/37/	M;			1937-2	
	atmosp	(2019)	cells, as holes	2015];	Matei,				
	heric		blocking layer.	Romania	, i				
	mist			n	Leona				
	chemic		morphology and	Ministry	t, LN;				
			optical properties of	of	Pintili				
	al vapor		the ZnO films were	Research	e, L;				
	techniq		investigated by X-	and	El				
	ue		ray Diffraction	Innovatio	Harfa				
L	1	1	-	1	1	1	1	1	

			(XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), conventional and Photoluminescence (PL) spectroscopies, respectively. The XRD measurement proves the existence of the hexagonal wurtzite phase and a high degree of crystallinity with [001] preferential orientation. The SEM study shows that the films possess a compact structure. Smooth and homogenous surface was confirmed also by AFM. The obtained results indicate that ZnO	n [PN18- 110101]	oui, N; Fahou me, M				
			films deposited by a simple, safe and cost-effective method present a great potential for application in perovskite solar cells. The time-dependent	CNCS-					
164.	Interact ion and Size Effects in Open Nano- Electro mechan ical System s	PHYSICA STATUS SOLIDI B- BASIC SOLID STATE PHYSICS, 256 , 1800443 (2019)	transport of a 2D quantum wire (QW) connected to source/drain leads and electrostatically coupled to a singly- clamped InAs cantilever is investigated. The latter is placed above the nanowire and	UEFISC DI Grant [PN-III- P4-ID- PCE- 2016- 0084]; TUBITA KTurkiy	Tanat ar, B; Moldo veanu, V; Drago mir, R; Stanci u, S	1.454	0.413	10.1002/ pssb.201 800443	Q3

				1					
			acts as a	ve					
			nanoresonator (NR)	Teknoloj					
			in the quantum	ik					
			regime. The vibron	Arastirm					
			dynamics and the	a					
			transport properties	Kurumu					
			of this nano-	(TUBIT					
			electromechanical	AK)					
			system (NEMS) are	[117F12					
			described within a	5]					
			generalized master	c]					
			equation approach						
			which is exact with						
			respect to the						
			electron-vibron						
			coupling. A detailed						
			description of the						
			electron-vibron						
			coupling by taking						
			into account its						
			dependence on the						
			wavefunctions of the						
			quantum nanowire is						
			introduced. It is						
			shown that the						
			tunneling processes						
			in the QW trigger						
			periodic oscillations						
			of the average vibron						
			number even in the						
			absence of a bias.						
			The time-dependent						
			filling of the vibronic						
			states changes as the						
			nanoresonator is						
			swept along the						
			quantum wire.						
	Polariza	MODELLING	Berry phase (BP)	Romania					
	tion	AND	polarization	n	Filip,				
	branche	SIMULATION	calculations have	Ministry	LD;			10.1088/	
	s and	IN	been investigated for	of				1361-	
165.	optimiz		several ferroelectric	Educatio	Plugar	1.826	0.672		Q3
	ation	MATERIALS	materials from the	n	u, N;			651X/ab	
	calculat	SCIENCE	point of view of	Executiv	Pintili			146e	
	ion	AND	practical	e Unit	e, L				
	strategy	ENGINEERIN	calculations. It was	for					
	-uuuegy				1				

applied	<i>G</i> , 27 ,045008	shown that	Funding		
to	(2019)	interpretation of the	High		
ABO(3)	(_01))	results is particular	Educatio		
ferroele		to each case due to	n,		
ctrics		the multivalued	Research		
euros		aspect of polarization			
		in the modern theory.			
		Almost all of the	ment and		
		studied examples	Innovatio		
		show ambiguous	n (MEN-		
		polarization results	UEFISC		
		which can be	DI)		
		difficult to solve	through		
		especially for super-	the		
		cells containing large			
		number of atoms.	Research		
		For this reason, a	Team		
		procedure has been	Grant		
		proposed to	[PNII-		
		minimize the number	-		
		of calculations	2012-3-		
		required to produce	0320,		
		an unambiguous	11];		
		polarization result	NIMP		
		from BP polarization			
		investigations.	Program		
		0	[PN18-		
			110101];		
			PCCF		
			project		
			PN-III-		
			P4-ID-		
			PCCF-		
			2016-		
			0047];		
			Ministry		
			of		
			Research		
			and		
			Innovatio		
			n though		
			UEFISC		
			DI		
			executive		
			unit. 6		

166.	Vibrati onal and photolu minesce nce properti es of polydip henyla mine doped with silicotu ngstic acid heterop olyanio ns and their compos ites with reduced graphen e oxide	JOURNAL OF MOLECULAR STRUCTURE, 1184 , pp.25-35 (2019)	In this work, the influence of silicotungstic acid concentration on the diphenylamine (DPA) electro- polymerization in the absence and the presence of reduced graphene oxide (RGO) is studied. The optical properties of the composites based on polydiphenylamine (PDPA) doped with the H4SiW12O40 heteropolyanions and RGO are investigated by Raman scattering, IR absorption spectroscopy and photoluminescence (PL). The presence of RGO induces an up-shift of the oxidation maximum of the DPA, as a result of a covalent functionalization process of graphene sheets with the polymer in the doped state. The deposition of PDPA onto RGO sheets surface is confirmed by the Raman scattering studies. Regardless of the H4SiW12O40 concentration, an up- shift of the IR bands from 910 to 1014 cm(-1) to similar to 920 and 1022 cm(-1)	European Regional Develop ment Fund under the Competit iveness Operatio nal Program [58/05.09 .2016]; National Institute of Materials Physics [58/05.09 .2016, 2570/29. 11.2017]; National Authorit y for Scientific Research and Innovatio n [58/05.09 .2016]; Pro- Vitam Ltd. [2570/29. 11.2017]	Baibar ac, M; Stroe, M; Fejer, SN		0.244	10.1016/j .molstruc .2019.02. 014	
------	--	---	--	--	--	--	-------	--	--

		is reported as a consequence of the compensation of positive charges of PDPA macromolecular chains with of the H4SiW12O40 heteropolyanions. An enhancement in the absorbance of the IR bands situated in the spectral range 750- 1050 cm(-1) accompanied of a decrease in the relative intensity of the PL bands of PDPA and their composites with RGO, as increasing the H4SiW12O40 concentration, is reported. In the presence of RGO, a change in the PDPA PL spectra profile is						
		also highlighted. (C) 2019 The Authors. Published by Elsevier B.V.						
167.	based organo	The efficiency of the Organic Light Emitting Diode (OLED) is given either by the internal quantum efficiency of the organometallic compound or by the charge transport across OLED. IrQ(ppy)(2) is a new organometallic compound which gives green and red electroluminescence.	the Romania n National Authorit y for Scientific Research CNCSU EFISCDI [PN-II- ID-PCE- 2011-3-	Polosa n, S	1.449	0.236	10.1088/ 2053- 1591/ab0 625	Q3

	This dual arrittan	Com			
	This dual emitter	Core			
	compound exhibits a	-			
	lower internal	of NIMP			
	quantum efficiency	21 N			
	compared with				
	classical Ir(ppy)(3)				
	green emitter				
	because of a weak				
	coupling between				
	Ir3+ and oxygen ions				
	which significantly				
	reduces the charge				
	transfer towards				
	quinoline ligand.				
	This lower internal				
	quantum efficiency				
	is compensated by				
	the higher electron				
	donor character of				
	the quinoline ligand				
	which induces better				
	change transport in				
	OLED structures. In				
	the case of Ir(ppy)(3)				
	green emitter, the				
	efficiency can be				
	improved by adding				
	magnetic or metallic				
	nanoparticles which				
	significantly change				
	the charge transport				
	for the Ir(ppy)(3)				
	based OLED				
	structures. The				
	metallic or magnetic				
	nanoparticles				
	embedded in the				
	transparent and				
	conductive polymer,				
	reduce the electron				
	injection, acting as				
	filling traps, which				
	directly increases the				
	electroluminescence				
	and the current at the				
	same voltage.				

168.	Coordin ation polyme rs and a dinucle ar comple x constru cted from zinc(II) ions and fluoresc ein: iodine adsorpti on and optical properti es	<i>JOURNAL OF</i> <i>COORDINATI</i> <i>ON</i> <i>CHEMISTRY</i> , 7 2 , pp.1222- 1237 (2019)	1-D coordination polymers, (1)(infinity)[Zn(fl)(2))]center dot 2EtOH and (1)(infinity)[Zn(fl)(2))]center dot 2MeOH, and a dinuclear complex, [{Zn(fl)(2)}(2)(dienp ip)]center dot 4H(2)O center dot 4EtOH (dienpip= N,N '-bis(2- aminoethyl)piperazin e), were obtained using Zn(II) ions and fluorescein anions (fl). Thermal analysis shows stability of the polymers after solvent removal up to more than 400 degrees C. Crystallization solvent molecules were removed under reduced pressure with the preservation of the polymeric structure, (1)(infinity)[Zn(fl)(2))]. Desolvated crystals were exposed to I-2 vapors and the crystal structure determination by X- ray diffraction confirmed the presence of I-2 molecules in the channels generated in crystals by the metal-organic		Raduc a, M; Ene, CD; Ionesc u, S; Florea , M; Madal an, AM	1.685	0.166	10.1080/ 0095897 2.2019.1 605442	Q3
------	---	--	---	--	--	-------	-------	---	----

		framework. The iodine content, evaluated by X-ray diffraction, corresponds to the overall formula (1)(infinity)[Zn(fl)(2))]center dot 0.3I(2). The optical properties of the coordination polymers and the dinuclear complex have been investigated. [GRAPHICS].	European					
169. e by powder	<i>JOURNAL OF</i> <i>MOLECULAR</i> <i>STRUCTURE</i> , 1178 , pp.702- 710 (2019)	(Imuran), one of the oldest immunosuppressants , having been used in transplantation since the early 1960's, is known to have only two crystal forms: an anhydrous form and a dihydrate phase. We report the crystal structure of a new anhydrous solid-state form of Azathioprine, determined directly form powder X-Ray diffraction data, employing the direct- space genetic algorithm technique for structure solution, followed by Rietveld refinement. The new anhydrous polymorph is accessible only by a solid-state dehydration process	Regional Develop ment FundEur opean Union (EU); National Institute of Materials Physics [58/05.09 .2016, 4529/29. 11.2017]; National Authorit y for Scientific Research and	Buhalt eanu, L; Barbat u, A; Baibar ac, M; Daesc u, M; Matea , A;	2.12	0.244	10.1016/j .molstruc .2018.10. 065	I I

			of the readily obtained monohydrate form of Azathioprine, the form for which a crystal structure has not previously been reported. The IR and Raman spectra confirmed the results obtained from X-Ray diffraction indicating the presence of all functional groups involved in intermolecular hydrogen bonding which dictates different arrangement of molecules in the structural packing. (C) 2018 Elsevier B.V. All rights reserved.	Founds as Managin g Authorit y for Operatio nal					
170.	thin	APPLIED PHYSICS A- MATERIALS SCIENCE & PROCESSING, 125 ,113 (2019)	We report the successful growth of multiferroic (Nd,Fe)- doped PbTiO3 thin films with the composition (Pb0.88Nd0.08)(Ti0. 93Fe0.05Mn0.02)O- 3 (PNFT) using pulsed laser deposition. The deposited films have been investigated by XRD, SEM, energy- dispersive X-ray spectroscopy (EDS), secondary-ion mass spectroscopy (SIMS), atomic force microscopy, magnetic force	Joint Project CNR, Romania n Academy "Study and Develop ment of Single- Phase Multiferr oic Perovskit e Ceramic and Thin Films for Multifun	Dumit ru- Grivei , M; Ion, V; Birjeg a, R; Moldo van, A; Craciu n, F; Cerne a, M; Galass i, C; Dines cu, M	1.784	0.308	10.1007/ s00339- 019- 2403-5	Q3

			microscopy,	ctional					
			piezoforce	Devices"					
			microscopy,						
			spectroscopic						
			ellipsometry (SE)						
			and dielectric						
			spectroscopy						
			measurements.						
			PNFT films						
			deposited on						
			different substrates						
			(MgO, SrTiO3 and						
			Nb:SrTiO3) are						
			(001) oriented,						
			preserving the						
			orientation of the						
			single-crystal						
			substrates. EDS						
			mapping and SIMS						
			across the film						
			thickness probed the						
			uniform distribution						
			of all the elements.						
			The refractive index						
			and extinction						
			coefficient have been						
			obtained with the SE						
			software package						
			and refined with an						
			optical-graded						
			model. Magnetic						
			domains and						
			ferroelectric domains						
			have been evidenced						
			at microscopic scale.						
			Good dielectric						
			properties and low						
			loss, comparable to						
			those of bulk						
			materials, have been						
			obtained.						
	Compar	PROCESSING	Ba0.75Sr0.25TiO3	POC-G	Stanc				
	-	AND	(BST) and	projectM				10.2298/	
			PbZr0.68Fe0.14Nb0.	AT2IT		0.976	0.19	PAC190	Q3
171.	betwee	APPLICATIO	FUZIU.00FEU.14MUU.	L 1 2 1 1	1 Minai	0.770			∇J
		APPLICATIO N OF	14Ti0.04O3		ande,	0.970	0.17	3269S	QJ

	c and	, pp.269-276	pellets were obtained	Ministrv	Botea,				
	pyroele		by ceramic	of	M;				
	ctric		technology and their	Research	· ·				
	properti		structural,	and	A;				
	es of		ferroelectric and	Innovatio	1 '				
	PZFNT		pyroelectric	n)	t, LN;				
	and		properties were	[54/2016,					
	BST		investigated. The	105726];	1				
	type		relative density of	Core	AG;				
	ceramic		BST and PZFNT is	Program	Cioan				
	s		about 93% and 90%,	PN19-03	gher,				
			respectively, with an	[21	M;				
			average grain size of	-	Balesc				
			102 mu m and 6.45	2019]	u,				
			mu m. Both	-	LM;				
			materials have		Pintili				
			similar room		e, L				
			temperature						
			dielectric constants						
			(similar to 2000), but						
			PZFNT shows higher						
			remnant polarization						
			(similar to 15 mu						
			C/cm(2)) and better						
			pyroelectric						
			properties (similar to						
			1.69.10(-4)						
			C/m(2)K), which						
			recommend it for						
			pyroelectric						
			detectors, infrared						
			radiation- and laser						
			pulse energy-meters.						
			Ferroelectric field	Romania	Beslea				
			effect transistors	n	ga, C;				
	Ferroel		(FeFETs) based on		Radu,				
		IEEE	lead zirconate	of	R;				
	Field	JOURNAL OF	titanate (PZT)	Research	(⁽			10.1100/	
	Effect	THE	ferroelectric material		u,			10.1109/	
172.		ELECTRON	and amorphous-	Innovatio		2	0.764	JEDS.20	Q3
		DEVICES	-	n;	Stanc			19.28953	
	Based	SOCIETY, 7 ,	oxide (a-IGZO) were		u, V;			67	
		pp.268-275	developed and	e Unit	Costas				
	and	(2019)	characterized. The	for	, A;				
	IGZO		PZT material was	Financin					
			processed by a sol-	g Higher					
			Processed of a sol	0	, • ,				

			gel method and then used as ferroelectric gate. The a-IGZO thin films, having the role of channel semiconductor, were deposited by radio- frequency magnetron sputtering, at a temperature of similar to 50 degrees C. Characteristics of a typical field effect transistor with SiO2 gate insulator, grown on highly doped silicon, and of the PZT-based FeFET were compared. It was proven that the FeFETs had promising	National Council of Scientific Research (CNCS- UEFISC DI) [PN- II-RU- TE-	G;			
173.	TROC	DIGEST JOURNAL OF NANOMATERI ALS AND BIOSTRUCTU	Scanning electron	Ministry of Educatio n and Research	Sima, M; Vasile , E;	0.638	0.105	Q4
		<i>RES</i> , 14 , pp.935-941 (2019)	microscopy and transmission electron microscopy images confirmed presence of carbon nanoparticles on the surface of anatase TiO2 films. Nanocarbon	(Core Program) [PN19- 03, 21 N/08.02. 2019]	Sima, A			

TiO2		decorated TiO2					
FILMS							
FILIVIC		photoanodes were					
		characterized by					
		electrochemical					
		impedance					
		spectroscopy and					
		Mott-Schottky					
		analysis. Charge					
		recombination					
		process was					
		evaluated by					
		measurement of					
		open-circuit voltage					
		decay after					
		interruption the					
		illumination Only a					
		small enhancement					
		of					
		photoelectrochemical					
		performance of these					
		photoanodes was					
		observed. It was					
		attributed to					
		increasing of charge					
		carrier density as a					
		result of nanocarbon					
		deposition on TiO2 film.					
STRU		High speed high					
TURA		pressure torsion					
L		(HSHPT) a patented					
EVOL		new approach is					
UTION	V	proposed to fabricate					
OF	DIGEST	nanocomposites. The		Gurau			
THE	JOURNAL OF	goal of this work is		, C;			
NiTi/N	i NANOMATERI	to investigate the		Gurau			
FeGa	ALS AND	NiTi/NiFeGa bilayer	[47PCC	, G;	0.620	0.107	
	BIOSTRUCTU		DI/2018]	Tolea,	0.638	0.105	Q4
T	<i>RES</i> ,14,	nano- and		F;			
	I pp.539-546	submicrocrystalline		Samp			
D	(2019)	structure under the		ath, V			
MATE		influence of HSHPT.		, , , ,			
RIAL	'	Apart from the grain					
DURI	N	refinement, the					
	`	effectiveness of the					
G							
SEVE	X	joint are revealed					

Γ		Б							
		E		scanning electron					
		PLAST		microscopy (SEM)					
		IC		and transmission					
		DEFOR		electron microscopy					
		MATIO		(TEM). The					
		Ν		mechanical					
				properties of the					
				composite layers in					
				bulk and after severe					
				plastic deformation					
				are investigated. Bi-					
				layered composite					
				disks consisting of					
				NiTi shape memory					
				alloy and NiFeGa -					
				Heusler type alloy,					
				exhibit thermoelastic					
				structural martensitic					
				transformation.					
				Submicrocrystalline					
				structure is formed in					
				the both layers of the					
				hybrid material. It is					
				also ascertained					
				significant hardening					
				of each layer of the					
				hybrid as a result of					
				HSHPT. The results					
				highlight market					
				differences between					
				the bulk and the					
				hybrid and the role					
				of severe plastic					
				deformation on					
				martensitic					
				transformation.					
┝		STDUC				Stores			
		STRUC	DICEST	Lead zirconate		Stanc			
			DIGEST	titanate doped with		u, V;			
		L, DIELE		iron and niobium	POC-G	Amar			
			NANOMATERI	× /	project	ande,			
	175.		ALS AND	prepared by	MAT2IT	L;	0.638	0.105	Q4
				conventional	[54/2016,	Botea,			
		PYROE		processing	105726]	IVI;			
			pp.225-230	technique, solid state		Cioan			
			(2019)	synthesis method.		gher,			
		PROPE		The influence of		M;			

	OF Nb AND Fe DOPE D PZT CERA MICS		microstructure, ferroelectric and pyroelectric properties was investigated. XRD data reveals a perovskite structure near to the lead zirconate phase. The relative density of PZFNT is approximate 90%, with average grains size of 6.45 mu m. Raman investigations on nanocomposites obtained by loading	Departm ent of Defense Grant	escu, A; Iuga, A; Pintili e, L				
176.	Raman investig ations on gamma irradiat ed iPP- VGCN F nanoco mposite s: The polyme r's tale	<i>SURFACES</i> <i>AND</i> <i>INTERFACES</i> , 17 ,UNSP 100351 (2019)	various amounts of vapor grown carbon nanofibers within an isotactic polypropylene matrix, and gamma irradiated in air, at various integral doses ranging between 0 and 27 kGy, are reported. The analysis is focused on the polymer's answers as revealed by Raman spectroscopy and investigate in detail the effect of ionizing radiation on the position of the Raman line originating from the polymer. The as- obtained data are correlated to the elastic features of the nanocomposites. A	[W911N F-15-1- 0063]; NSFNati onal Science Foundati on (NSF) [DMR- 1523577] ; IRASM Centre of	C; Lozan o, K; Secu, M; Chipa ra, M	not availabl e	not availa ble	10.1016/j .surfin.20 19.10035 1	ava

		competition between gamma irradiation and loading by carbon nanofiber, resulting in the stretching of the polymeric matrix and revealed as a displacement of Raman lines towards smaller wavenumber is reported. It is concluded that side groups (CH3) are less affected by the loading with carbon nanofibers, Detection in short-	Physics and Nuclear	Slav,			
Magnet 177. ron	NANO	wave infrared (SWIR) has become a very stringent technology requirement for developing fields like hyperspectral imaging or climate changes. In a market dominated by III-V materials, GeSn, a Si compatible semiconductor, has the advantage of cost efficiency and inerrability by using the mature Si technology. Despite the recent progress in	DI project M- ERA.NE T GESNA PHOTO Contract [58/2016]; UEFISC DI project PCE Contract [122/201 7]; Romania n Ministry of National Educatio n through NIMP Core Program	A; Palade , C; Logof atu, C; Dasca lescu, I; Lepad atu, AM; Stavar ache, I; Coma nescu, F; Iftimi e, S; Antoh e, S; Lazan u, S;	not availa ble	10.1021/ acsanm.9 b00571	not ava ilab le

	501) J/001	C:	 	
nanocrystals (NCs)	[21N/201			
embedded in oxide	9];	, ML;		
matrix and their	Romania	Braic,		
SWIR	n	M;		
characterization. The	Ministry	Stoica		
simple and cost-	of	, T		
effective fabrication	National	<i>`</i>		
method is based on	Educatio			
thermal treatment of	n through			
amorphous (Ge1-	INOE			
xSnx)(y)(SiO2)(1-y)	Core			
layers deposited by	Project			
magnetron	[33N/201			
sputtering. The	8]			
nanocrystallization				
for Ge1-xSnx with 9-				
22 at. % Sn				
composition in SiO2				
matrix with 9% to				
15% mole percent				
was studied under				
low thermal budget				
annealing in the 350-				
450 degrees C				
temperature range.				
While the Sn at.%				
content is the main				
parameter				
-				
influencing the band-				
structure of the NCs,				
the SWIR sensitivity				
can be optimized by				
SiO2 content and H-				
2 gas component in				
the deposition				
atmosphere. Their				
role is not only				
changing the				
crystallization				
parameters but also				
to reduce the carrier				
recombination by				
passivation of NCs				
defects. The				
experiments indicate				
a limited				
a minieu				

			composition dependent temperature range for GeSn NCs formation before beta-Sn phase segregation occurs. NCs with an average size of 6 nm are uniformly distributed in the film, except the surface region where larger GeSn NCs are formed. Spectral photovoltaic current measured on SiO2 embedded GeSn NCs deposited on p-Si substrate shows extended SWIR sensitivity up to 2.4 mu m for 15 at. % Sn in GeSn NCs. The large extension of the SWIR detection is a result of many factors related to the growth parameters and also to the in situ or ex situ annealing procedures that influence the uniformity and size distribution of NCs						
	Particul		distribution of NCs. This is the first	[PNII-	Raciul				
178.	arities of trichlor oethyle ne photoca talytic	<i>JOURNAL OF ENVIRONME NTAL CHEMICAL ENGINEERIN</i> G, 7 ,UNSP 102789 (2019)	report on synthesis and photocatalytic activity for trichloroethylene (TCE) degradation under simulated solar light over RbLaTa2O7 layered perovskites with predominant	PT- PCCA BICLEA NBIOS 46/2012]	ete, M; Papa, F; Kawa	not availabl e	not availa ble	10.1016/j .jece.201 8.11.034	not ava ilab le

crystalli	nanowire or platelet	Culita,
ne	morphologies. SEM	DC;
RbLaTa	images witnessed	Negril
207	that the one step	a, C;
	thermal treatment at	Atkins
nanowir		
e	1200 degrees C lead	on, I;
bundles	to formation of	Bratan
grown	RbLaTa2O7	,V;
by	nanowires with	Pande
solid-	diameter of 80-320	le-
state	nm and several	Cusu,
synthesi	microns in length	J;
s route	associated in bundles	Balint,
	and sharp-edged,	
	merged platelets	
	(minor phase). The	
	two-step annealing at	
	950 degrees C and	
	1200 degrees C	
	resulted in decrease	
	of wires bundle	
	population and	
	increase in that of	
	platelets merged in	
	facetted particles.	
	The RbLaTa2O7	
	nanowires are made	
	of by well-aligned	
	atomic rows with	
	preferred orientation	
	toward the c-axis,	
	relatively free of	
	defect. High density	
	of hydroxyl groups	
	on the sample	
	calcined in mild	
	conditions	
	(RbLaTa_01) favors	
	the photo mineralization of	
	TCE. In contrast, the	
	activity of	
	RbLaTa_02 annealed	
	in harsh conditions	
	(950 and 1200	
	degrees C), poor in	

	WITH	BULLETIN	shell composites.	Cerne				
		SERIES B-	BaTiO3-coated	a, M;				
	SHELL	CHEMISTRY	Fe3O4	Oprea,				
	STRUC	AND	(Fe3O4/BaTiO3)	OC				
	TURE	MATERIALS	with 5-15 nm Fe3O4					
		SCIENCE, 81 ,	nanoparticles as					
		pp.171-180	cores and 2.5-4 nm					
		(2019)	BaTiO3 shell					
			thickness, was					
			successfully					
			prepared through					
			coprecipitation					
			method and sol-gel					
			deposition technique.					
			High-Resolution					
			Transmission					
			Electron Microscopy					
			(HRTEM), Energy Dispersive X-ray					
			Spectrometry					
			(EDXS) and					
			Selected-Area					
			Electron Diffraction					
			(SAED) showed the					
			formation of the					
			core-shell structure					
			with face centered					
			cubic Fe3O4 and					
			tetragonal BaTiO3					
			phases.					
			The Polovragi Cave-					
			Oltetului Gorge karst					
	Capatan		area is about 3 km(2)					
	ii/Paran		in size and is traverse					
	g		by the Oltet River					
		CAVE AND	through a spectacular	Ponta,			10.1007/	
	ins:	KARST	narrow gorge, which	GML;	not	not	978-3-	not
180.		SYSTEMS OF	represents the natural	Aldica	availabl		319-	ava
	gi	ROMANIA,,	boundary between	, GV;	e	ble	90747-	ilab
	Cave-	pp.83-91	Parang Mountains to	Dumit			5_12	le
	Oltetulu	(2019)	the west and	ru, R				
	i Gorge		Capatanii Mountains					
	Karst Area		in the east. These mountains are part of					
	AICa		the Southern					
			Carpathian. Focul					

Viu Caving Club	
surveyed the	
Polovragi Cave	
between 1975 and	
1985. In parallel with	
the survey activities	
in the main cave	
developed on the	
first level, several	
smaller caves were	
identified on both	
sides of the Oltetului	
Gorge. These caves	
are located on the	
second and third	
levels, which are	
interrelated with	
different	
peneplanation events	
that occurred in the	
Carpathians. In 2000,	
Focul Viu began	
working in the cave	
again, replacing	
gates, removing	
trash, digging to	
open new passages,	
and performing	
underwater	
explorations. By the	
end of 2011, new	
passages were found	
in the Hope Chamber	
and Costin Gallery,	
extending the total	
length of the cave to	
10,793 and 92 m in	
vertical range. The	
Polovragi Cave	
along with two other	
smaller caves is	
presented in this	
chapter. The	
Polovragi Cave is the	
third longest cave in	
the Southern	
uie bouttern	

			Carpathians and the eleventh in Romania. One of the smaller caves hosts an important bat colony, and the other one,					
			with 800 m of passages, hosts Ursus spelaeus bones and deposits of saltpeter. The Bones Cave (Pestera cu Oase) located on the western side of the gorge (opposite side of Polovragi Cave) at a higher elevation is					
			an old meander of the Oltet River. Martel and Lazului are active phreatic/epiphreatic					
181.	Mehedi nti Mounta ins: Martel and Lazului Caves	SYSTEMS OF ROMANIA,, pp.157-163	caves with a superimposed vadose morphology. Martel is a branchwork cave developed parallel with the river as a left (north) side meander and is located at about 8 m below the thalweg. The water level in the cave rises and falls along the main gallery, where the lakes/streams at the lightest rain become sumps. The cave is relatively poor in speleothems, except the fossil gallery (CS FV Gallery of Memories) located at the upstream end of the cave, but	Ponta, GML; Aldica , GV; Tuluc an, T	not availabl e	not availa ble	10.1007/ 978-3- 319- 90747- 5_19	not ava ilab le

numerous erosion	
and corrosion	
features are present.	
Lazului is also a	
branchwork cave,	
forming a large	
meander on the right	
(south) side of the	
Motru Sec River,	
where at the lowest	
points of the cave,	
five streams are	
disappearing	
underground.	
Erosion and	
corrosion features	
are present, and	
speleothem is found	
occasionally in the	
upper level of the	
cave.	