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1 Introduction.

In the last time the Artificial intelligence has been used to solve many complex problems, by
developing intelligent systems.

Fuzzy logic has been proved to be a powerful tool for decision making systems such as
expert systems. Fuzzy set theory has already been used in some medical expert systems.
Uncertainty is the crucial, critical fact about medical reasoning. Patients cannot describe
exactly what has happened to them or how they fill, doctors cannot tell exactly what they
observe, laboratory report results only with some degree of error, physiologists do not
understand precisely how the human body works, medical researchers cannot precisely
describe how diseases alter the normal functioning of the body, pharmacologists do not fully
understand the mechanism accounting for the effectiveness of drugs, and no one can
precisely determine one’ s prognosis.

Nevertheless we must make important, even crucial decisions testing and treatments and,
despite the uncertainties about the bases for those decisions, the decision themselves must
be definitive ( P.Szolovitz Uncertainty and Decisions in Medical Informatics. Methods of
Information in Medicine 34 , 1995)

The medical knowledge concerning the symptom — disease relationship constitutes one
source of imprecision and uncertainty in the diagnosis process, and the knowing of the state
of the patient constitutes another.

The physicians generally gather knowledge about the patient from the past history, physical
examination, laboratory results and other investigative procedures such as X —rays and
ultrasound studies. The information provided by each of these sources carries with it varying
degrees of uncertainty. The past history offered by the patient may be subjective,
exaggerated, underestimated or incomplete. Mistakes may be made in physical examination
and symptoms may be overlooked. The measurements provided by the laboratory tests are
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often of limited precision, and the exact borderline between normal and pathological is often
unclear. Thus the physician can know only with a limited degree of precision the state and
symptoms of the patient. In the face of uncertainty concerning the symptoms to a disease
entity it is nevertheless crucial that the physician determines the diagnostic label that will
entail the appropriate therapeutic regimen. In order to understand better this difficult and
important process of medical diagnosis and treatment, it can be modeled with the use of
fuzzy sets. These models vary in the degree to which they attempt deal with different
implicating aspects of medical diagnosis.

2.Basic concepts of fuzzy sets and fuzzy inference.

Medical fuzziness is imprecision: a fuzzy proposition may be true in some degree. The word
crisp is used as meaning “ non fuzzy “. Standard examples of fuzzy propositions use
linguistic variables as age with possible values: young, medium old or similar. The sentence
“the patient is old “ is true in some degree, the bigger is the age the more the true.

Truth of fuzzy proposition is a matter of degree.

2.1 Fuzzy sets.
Fuzzy set is a set with imprecise boundaries in which the transition from membership to non-
membership is gradual rather than abrupt.
Universe. Elements of a fuzzy set are taken from a universe of discourse, or universe for
short. The univers contains all elements that can come into consideration.
Membership function.Every element in the universe of discours is a member of the fuzzy
set to some grade, may be even zero.The function that ties a member to each element x of
the universe is called the membership function m(x)
Singleton A fuzzy set A is a collection of ordered pairs

A = {x,m(x)}
Item x belongs to the universe and m(x) is grade of membership in A.
A single pair (x,m(x)) is called fuzzy singleton; thus the whole set can be viewed as the
union of its constituent singletons.
2.2 Linguistic variables
Just like an algebraic variable takes number as values a linguistic variable takes words or
sentences as values.
In this way, a fuzzy set F in a universe of discourse U is characterized by memberships

mF(u) O( 0,1)

in the fuzzy set F. Note that a classical set A in U is a special case of fuzzy set with all
membership values mA(u) 0O (0.1)
The basic concept underlying fuzzy logic is the linguistic variable. A linguistic variable is
characterized by a quintuple (x,T(x), U, G, M) in which x is the name of linguistic variable;
T(x) is the term set of x, that is, the set of names of linguistic values of x; and M is a semantic
rule for associating with each value its meaning.
Example.
Let us consider the linguistic variable Symptom 1. Its term set S1(symptom 1) could be:

increasing, stationary decreasing, where each term is characterized by a fuzzy set in a

universe of discourse U (-40%, 40%). We might interpret decreasing evolution in percentage
between -40% and —-20%, an stationary as evolution between —20% and + 20% and
increasing between 20% and 40%. This terms can be characterized as fuzzy sets whose
membership functions are shown in fig 1. For example if the symptom evolution is —25%
then the membership degree to the fuzzy subset stationary is equal to zero.

Fuzzy logic provides operations , which acts on fuzzy sets. For example the union A U B of
two fuzzy sets is defined as

m(A U B)(xX)) = max (mA(x), mB(x)) forallxinU

2.3 Continous and discret representations.

There are two alternative ways to represent a membership functions in a computer;
continuous or discrete.In the continuous form the membership function is a mathematical
function, possible a program. A membership function is for example a triangular.

In the discrete form the membership function and the universe are discret points in a list.
Sometimes it can be more convenient with a sampled ( discret ) representation.



2.4 Fuzzy inference
The process of converting the crisp input data to a fuzzy set A is called fuzzyfication. It maps
the input data into their membership functions.
A fuzzy implication is viewed as describing fuzzy relation between fuzzy sets forming the
implication.
A fuzzy rule, such as
“IFXIS ATHENYISB®

is a fuzzy implication which has a membership function m(A. - B)(x,y) U (0, 1)
Note that m(A - B)(X,y) measures the degree of truth of the implication relation between x
and y. The IF part of an implication is called the antecedent (premise ) whereas the THEN
part is called the consequent.
Using the minimum implication, the membership function of the fuzzy implication is defined
as:

m(A. - B)(X,y) = min (mA(x), mB(y)).
Let us consider the following rule template, where X, Y and Z are linguistic variables defined
on the universe of discourse U, V and W respectively

R)IF XisAandYisB then ZisC i =1.n

Given the crisp input (X, y) the goal is to determine the output “Z is C” using fuzzy inference.
The most commonly used fuzzy inference methods are so called Max-Min or

Max-Product methods which will be described in (6)

The result of the fuzzy inference system is a fuzzy set. The Defuzzification step produce a
representative crisp value as the final output of the system. There are several Defuzzification
methods. The most commonly used is the Centroid (Center of gravity) defuzzyfier, which
provides a crisp value in the center of gravity of the result ( the output fuzzy set)

3 Expert system Object

To understand better the application of fuzzy decision making in medicine, in the following
paragraphs we describe one method to establish the optimal dosage in the application of
one medical treatment.

The method description.
The first step in the process of one Expert System development is the establishment of
System’s object. For the illustration of the medical fuzzy programs we propose an Expert
Program ( designed to act as an expert for solving a sub-problem from the real world) to
assist the physician in the establishment of the dosage of a medical treatment. For a better
understanding the Program elaboration process the problem will be much simplified and
generalized. We suppose that in the evolution of the patient disease we watch over two
symptoms S1 and S2 and it is in application one treatment T. From the previous analysis we
know the Symptoms evolution and we wish to establish the next treatment dosage that prove
to be necessary.
The S1 and the S2 symptoms are characterized The implementation may prove to be
simplistic for some expert systems, however it does illustrate the process. Additional degrees
of Symptom S1 or S2 may be included if needed for the desired system response. This will
increase the rule base size and complexity but may also increase the quality of the decision.
through percent changes and are labeled as :

P (positive) which characterizes an increasing evolution

N (negative) which characterizes an decreasing evolution

Z (zero )which characterizes an stationary state
The notations for the treatment dosage are :

D denote an decreasing in dosage

M denote an maintaining in dosage

| denote an increasing in dosage.



Every symptom or treatment state is evaluated in percentage changes in comparison with
the initial moment chosen for comparison.

The following domains (universes of discourse ) are established for the symptoms S1, S2
and the treatment T:

For S1 the domain is -40%....... +40%

For S2 the domain is -20%....... +20% D)

For T1 the domainis  -100%....... +100%

4 The Rules establishment

Linguistic rules describing the expert system consist of two parts: an antecedent block
(between the IF and THEN keywords), and a consequent block (following THEN).

Depending on the system, it would not be necessary to evaluate every possible input
combination (3 by 3) since some outcomes may overlap or never occur.

By making this type of evaluation, usually done by an experimented expert in domain, fewer
rules can be evaluated, thus simplifying the processing logic. The rules use the input
membership values as weighting factors to determine their influence of the fuzzy output sets
on the final output conclusion ( in our case the treatment )

Once the functions are inferred , scaled and combined, they are defuzzyfied into a crisp
output which represents the decision.

The production rules written in quasi-natural language consist of two parts:
The antecedent part which is content between

Depending of the elaborating system, it is possible not to evaluate all the possible input
combinations.

For example, for a matrix of 5 x 5 ( assuming that exist 5 symptoms with 5 states ) (linguistic
variables) it is possible to be not necessary to evaluate all the 25 possible combinations. A
part may seldom appearing and another part not at all appearing.

When using a evaluation procedure which usually is established by the domain expert it will
be enough to evaluate a relative few number of rules. In this case the process will be
simplified without decreasing the decision precision.

The general structure of Fuzzy Program Expert will be of the type (in quasi-natural
language):

IF the evolution of the Symptom S1 is decreasing (N) AND
IF the evolution of the Symptom S is increasing (P)  THEN
The Treatment T will be increased (I)

Using this writing form for the two Symptoms S1 and S2 and the Treatment T, the following
rules structure is established:

Antecedent Block Consequent Block
IF S1IS N AND S2 IS N THEN T IS D
IF S1 1S Z AND S2 IS N THEN TIS |
IF S1 IS P AND S2 IS N THEN T IS |
IF S1IS N AND S2 IS z THEN T IS D
IF S1 1S Z AND S2 IS Z THEN TIS M
IF S1 1S P AND S2 IS Z THEN T IS |
IF S1IS N AND S2 IS P THEN TIS D
IF S1 1S Z AND S2 IS P THEN TIS D (2
IF S1 1S P AND S2 IS P THEN TIS |

Writing in matrix form this is :



Sin Slz Slp
S2n Td Ti Ti
S2z Td Tm Ti
S2p Td Td Ti

5 The Membership functions

After the rules elaboration the following step is the use of these rules. For this purpose it is
necessary to know the membership functions.

The membership function is a graphical or analytical representation of the participation
amount for of each input. It associates a weighting with each of the inputs that are
processed, - in our case the S1 and S2 Symptoms defines functional overlap between
inputs, and ultimately determines an output response, actually the Treatment.

There are different membership functions associated with each input and output response.
Some features are :

Shape : triangular, trapezoidal standard (using 2™ order polynoms ) exponential have been
used

Width (of the base of the function)

Center points (center of the member function shape)

Overlap ( N&Z, Z&P typically about 50% of with, but it can be less)

Figl illustrates the features of the triangular and trapezoidal functions .
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Figl General form for triangular and trapezoidal membership functions

There are many types of membership functions built up either of lines segments (triangular
or trapezoidal ) or the type sigmoid (polynomial order 2) known as Standard (S or Z
functions)

In the first example we have chosen for the Symptoms S1, S2 and the Treatment T, the
membership functions (msf) of the following type (Fig 2)
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Fig2 Symptoms S1, S2 and the Treatment T, the membership functions (msf)

For a fixed x point on the abscise it is possible to result more that one grades of membership
functions.



The degree of membership (DOM) is determined by plugging the selected input parameter
(S1 or S2) into the horizontal axis and projecting vertically to the upper boundary of the
membership functions.

The degree of membership for S1=-10 of (fig2 ) projects up to the middle of the overlapping
part of the “N (decreasing)* and “Z (maintaining)” function, therefore the result is “N
membership = 0.5 and Z membership = 0.5”

Only rules associated with “N” AND “Z” will apply to the output respon

Analytical describing of the membership functions

In almost all use cases is necessary to know not only the graphical representation of the
used membership functions but also their analytical representations. The problem that arises
is that the membership functions are defined on limited intervals and on the same interval
can coexist more that one function.

For following computing a Mathcad Program will be used and, therefore, to describe one
function defined on a limited interval we use the step function ®(x) defined as is illustrated
in fig 3:
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Fig3 Step functions a) @(x) b) &(x-c) c) P(x-a)- O(x-b)

The definition of ®(x) function is
dx)=1 for x= 0 (3.9)

0 for x<O
For a translated step function (fig 3) :
P (x-a)=1for x =2 a (3.b)

Ofor x<a

In fig 3c is represented a function which is defined on the interval a <x < b
To indicate that a function f(x) exists only on the interval x = a we multiply this function with

D (x-a)
To define a function given only on the limited interval (a, b) we have to write :
[P(x-a)- D (x-b)] (3.c)

The general form for the membership functions of the Symptoms S1, S2 and Treatment T is
illustrated on fig 4. The values of the parameters a, b, ¢, d and e in each case are:

For SymptomS1 a= -40 ;b=-20; ¢c=0; d=20; e=40
For SymptomS2 a= -20 ;b=-10; ¢c=0; d=10; e=20

For Treatment T a=-100 ;b=-50; ¢c=0; d=50 ; e=100 (4)
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Fig4 General form of S1, S2 and T

For the membership functions that represent the linguistic values of the symptoms S1 and
S2 will be used the notations :
S1n(x) for the decreasing membership function of S1



S1z(x) for the maintaining membership function of S1

S1p(x) for the increasing membership function of S1
And, respectively, for the membership of the Symptoms S2

S2n(x); S2z(x); and S2p(x)
For the treatment T we use the notations :
Td for the decreasing membership functions
Tm for the decreasing membership functions
Ti for the decreasing membership functions.

If we introduce the new function :

P(x, x1, X2 ) = P(x-x1)- P(x-x2) (5)

and we take into account the linear functions (Annex 1) that represent the increasing and
decreasing membership functions we obtain :

S1n(X) = @ (x, a, b)+ &(x, b, ¢).(1- %) a)

S1z(x) = @ (x, b, ¢).(x-c)/(d-c) + P(x, c, d).(1- ;(_C

) D)
S1p(x) = @ (x, ¢, d).(x-c)/(d-C)+ D(x, d, €) ) (6)

The parameter values a, b, ¢, d was indicated for each case in (4)
The following abbreviations are used :

n for decreasing

z for maintaining

p forincreasing

S1n means decreasing of S1 symptom, S1z maintaining of S1 and S1p increasing of S1.
Similar meaning have S2n , S2z and S2p
We are noting with w the truth grade (firing strength) of the rules. For example w(R1) mean
the firing strength of the R1 rule. There are obtained:

w(R1), w(R2)...... w(R9)
The indexes d, m and i mean decreasing, maintaining or increasing in the case of
Treatment T. Therefore, T1d mean the decreasing membership function of treatment .

6. The rules evaluation
After the system collects the input (data of a real case), the base rule is evaluated. The
antecedent (IF X AND Y) blocks test the inputs and produce conclusions. The consequent
(THEN Z) blocks of some rules are satisfied while other are not. The conclusions are
combined to form logical sums. In the frame of the inference process each response output
member function’s firing strength (0 to 1) is determined.
Considering again the rules, the plugging-in the membership function weights from above
“S1” selects rules 1,2,4,5,7, 8 while “S2 “ selects rules 4 through 9.
“S1” and “S2” for all rules are combined to a logical AND that is the minimum of either term.
Of the nine rules selected only four (rules 4, 5,7,8 ) fire or have non-zero results. This leaves
output response magnitudes for only “Decreasing” and “Maintaining” which must be inferred,
combined and defuzzified to return the actual crisp output. In the rules list below, the
following definitions apply :

If in a Rule two propositions X and Y have al memberships m(X) and m(Y) and are
connected through the connector AND then the resulted membership w(R) is given as

W(R) =min (m(X); m(Y)) (1)

As input data for the Symptoms S1 and S2 was chosen :
S1 show decrease a equal to —10% and S2 an increase equal to 5%.
Introducing these values into relation we get :
Sin= 05 S1z=0.5 and
S2z=05 S2p=05 (8)

Now all the rules will be examined and the degree of truth w(R) will be computed. For
example the R1 rule:
IFSlisNand S2isN ThenTis D



This means that

w(R1)=S1n n S2n=050n 0
because Sln=0.5and S2n=0
The use of the AND connector gives :
min(0.5;0) =0
Using the same reasoning for all rules we get :

Table 1

R2)IF S1 isZ AND S2isN THEN
W(R2)= 0.5(1 0=min (0.5;0)=0

R3)IF S1 isP AND S2is N THEN
W(R3)= 0. N 0=min (0;0)=0

R4)IF S1 isN AND S2isZ THEN
W(R4)= 0.5 () 0.5 =min (0.5;0.5)=0.5

R5)IF S1 isZ AND S2isZ THEN
W(R5)= 0.5 (] 0.5 =min (0.5;0.5)=0.5

R6)IF S1 isP AND S2isZ THEN
W(R6)= 0.5 (] 0.5 =min (0.5;0.5)=0.5

R7)IF S1 isN AND S2isP THEN
W(R7)= 0.5 (] 0.5 =min (0.5;0.5)=0.5

R8)IF S1 isP AND S2is P THEN
W(R8)= 0.0 ] 0.5=min (0; 0.5)=0

R9)IF S1 isZ AND S2is P THEN
W(R9)= 051 0=min (0.5;0)=0  (8)

It results that the rules R4, R5, R7 and R8 will be evaluated (fired) and all have w (R) =0..5
and the rules R1, R2, R3 and R6 will not be evaluated (fired) because their strength w is
equal to zero.

Of the 9 rules, only four (rules 4,5,7, 8) fire or have non-zero results. The rules 1,2,3,6 and 9
did not fire ( the firing strength is zero). This leaves fuzzy output response magnitude for only
“Decreasing” and “Maintaining”, which must be inferred, combined, and defuzzified , to
return the actual crisp output.

6.1 Inference .
Inference means the evaluation of a implication as :

IF (premise) THEN ( consequent)
If the rule has more premises connected by AND or OR connectors then we use for AND
computing the operator MIN and MAX operator for OR connector.
In the table 1 we indicate the use of AND operator and in the table ..
the use of both operators (AND and OR)
The computing results are membership degrees and was noted as

w(R1), w(R2)...W(R9) where R1, R2 ..R9 are the established rules. If in the rule is only
on premise then the rule firing strength w(R) is equal to the membership degree. For
example
R) IF S1p THEN Td

for S1p =0.7 results w(R)=0.7
If two or more rules are referring to the same output membership function then exist more
correlation methods



6.2 Correlation Methods.

There are several methods of restricting the height of the consequence fuzzy sets.
Correlation Minimum.

The most common method of correlation the consequent with the premise truth truncates the
consequent fuzzy region at the truth of the premise.

This is called correlation minimum, since the function sets is minimized by truncating it at a
minimum of the predicate truth.
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Fig 5 Correlation Minimum of Treatment decision

In fig 5 the evaluation of the treatment is adjusted depending the states of symptoms S1 and
S2. At a given moment the membership degree of S1z (stationary ) is equal to 0.7 and of
S2p (increasing) is equal to 0.5.

The fuzzy implication function requires the minimum of this two values (0.5)
We then use the correlation minimum to truncate the Treatment maintaining fuzzy set at 0.5
level This became the current fuzzy set for Treatment decision...

. Infig 5 it is the result of applying the rule :

IF Symptom S1 is stationary (S1z) AND Symptom S2 is increasing (S2p)
THEN the Treatment is maintaining (Tm) 9)

Correlation Product

While correlation minimum is the most frequently used technique, correlation product offer an
alternative and in many ways , better method of achieving this goal.

With correlation product, the intermediate fuzzy region is scaled instead of truncated.

This has the effect of schranking the original shape of the fuzzy set. In fig 5 it is the result of
applying the rule (9)

At a given time S1 has a 0.7 degree of membership S1z equal to 0.7and S2 a degree of S2p
equal to 0.5



The minimax implication function requires that we taken minimum of these two values
(0.5).We take use the correlation product to scale the Treatment Tm fuzzy set at this 0.5
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level. This became the current output fuzzy set for the decision
Fig 6 Correlation Product of Treatment

The ROOT-SUM-SQUARE (RSS) method combine the effects of all applicable rules, scales
the function at their respective magnitude, and computes the fuzzy "centroid” of the
composite area. In our example was selected since it seemed to give the best weighted
influence to all firing rules.

RSS method.
If the fired rules are
R1, R2,.....Rn
Wwith  w(R1), w(R2),....W(Rn) firing strengths the combined effect of these rules noted as
Sq in RSS method is :

Sq = [w(R1)*+w(R2)*+ w(Rn)*]*® (9)

In our case we have the following combined effects :

Sqd ....for rules which are referring to the Td (Decreasing) membership functions of the
treatment T

Sgm ....for rules which are referring to the Tm (Maintaining) membership functions of the
treatment T
Sqi ....for rules which are referring to the Ti (Increasing) membership functions of the
treatment T
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fig 7 llustration of RSS method

Referring back to the rules we would notice:

Symptom S1 selects rules 1,2,4,5,7,8

Symptom S2 selects rules 4,5 6,7,8,9

After combining by AND operator (find minimum) for all nine rules only rules 4,5,7,8 fire , or
have non zero results. This leaves fuzzy output response magnitude for only “Decreasing”
and “Maintaining”, which must be inferred combined and defuzzifyied to return the actual
crisp output.

In conclusion:

The inputs are combined logically using AND operator to produce output response values
for the expected inputs. The active conclusions are then combined into logical sum for each
output membership function. A firing strength for each output membership function is
computed. The logical sums are combined in defuzzifycation process to produce the crisp
value

7. Defuzzification

The Defuzzification step is one of the most important steps to be considered in the process
of designing an Expert System, because this establish the finally outcome.

To find the actual value of the corresponding scalar d (that represents the value of the
treatment adjusting (dosage) we must find a value that best represents the information
contained in the fuzzy set T. This process is illustrated in fig 8 called Defuzzification.

Such a process yields the expected value of the variable for a particular execution of the
fuzzy model .Defuzzification is the final phase of a fuzzy reasoning

In fuzzy models, there are several methods of determining the expected value of the solution
fuzzy region. These are the methods of decomposition, also called methods of
Defuzzification and describe an expected value for the final fuzzy state space.

Fig 8.Defuzzyfication
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In our proceeding the output membership function for every linguistic value of the treatment
results trough multiplication of the respectively Sq value (Sq for Decreasing, Sgm for
Maintaining, and Sqi for increasing) with their chosen membership functions (trapezoidal for
Decreasing and Increasing and triangular for Maintaining.

The resulted membership function surfaces are summated and results the final total surface
of the membership output function.

In our case every output membership function center value is multiplied by the Sq value. All
the obtained terms are summated and the obtained value is divided by the sum of the Sq
factors. For the output abscissa value we get :

TdCenter *Sqd +Tmcenter *Sgm +TiCenter *Sqi _
Td +Tm +Ti

chteer=

-100*0.866 +0.5*0.0 +100* 0.0

=-63.4 (10)
0.866 +0.5+0.0.

This mean that the Treatment dosage is to be decreased with 63.4%.

For the ongoing example, as center for the output membership function was chosen
The range limit for trapeze (x = -100 and x = 100)
The base of the middle for triangle (x = 0)

This option is doubtful and therefore another Defuzzification method will be also analyzed.
The used Defuzzification method is known as Max-Product because every output
membership function results as product between the firing strength Sq and the membership



function. The total output membership function is obtained by summing the resulted
membership functions (Treatment Decreasing, Maintaining , Increasing )

Comparative Analysis.
To illustrate the influence of the different input data (the S1 and S2 Symptoms values) and
different Defuzzification methods we selected 4 cases with the following inputs data :

Case 1 Case 2 Case 3 Case 4
X1=-10 x1 =-15 X1 =15 x1l=-5
X2 =5 X2 =3 X2 =7 X2=3

Because of the relatively large amount of numerical computing required, the Mathcad
program is used.
The membership functions analytic forms for S1 and S2 symptoms and treatment T are
indicated in (4). Since only four rules (R1,R4,R7 and R9 ) referring to the Td (treatment) are
fired (w(R) >0) using (9) we get :

Sqd = [ w(R1)*+ w(R4)*+ w(R7)*+ w(R8)? ]°®

For Tm only one rule is referring (R5) and therefore :

Sgm = [ w(R5)]*® =w (R5)

For Ti no one rule is referring and therefore :

Sgi=0
To?:ompute the membership functions we used the relations (6) and we get :
Case 1l Case 2 Case 3 Case 4
X1=-10 x2=5 X1=-15 x2=3 x1 =15 x2=7 x1=-5 X2=3
S1n=0.50 | S2n=0 S1n=0.75 | S2n=0 Sin=0 S2n=0 S1n=0.25 S2n=0
S1z=0.50 | S2z=0.50 | S1z=0.25 | $2z=0.70 S1z=0.25 S2z=0.30 S1z=0.75 S2z=0.70
S1p=0 S2p=0.50 | S1p=0 S2p=0.30 | S1p=0.75 | S2p=0.70 | S1p=0 S2p = 0.30
For the firing strength of the rules results :
w(R1) =S1n () S2n
w(R2) =S1z () S2n
w(R3)=S1p () S2n
w(R4) =S1n (] S2n
w(R5)=S1z () S2z
w(R6) =S1p ) S2z
w(R7)=S1n () S2p
w(R8) =S1z () S2p
w(R9)=S1p () S2p (11)

Introducing the numerical values of S1n, S1z.S1p, S2n,S2z, S2p for every case we get the
result given in table :

Case 1l Case 2 Case 3 Case 4

w(R1) | 0.50(10.00 | 0.00 |0.75(0.00 | 0.00 | 0.00(10.00 | 0.00 |0.25()0.00 |0.00
w(R2) | 0.50(10.00 | 0.00 | 0.25(10.00 | 0.00 |0.25(10.00 | 0.00 | 0.75()0.00 |0.00
wW(R3) | 0.00(10.00 | 0.00 |0.000.00 |0.00 |0.75(10.00 | 0.00 | 0.00()0.00 |0.00
w(R4) | 0.50(10.50 | 0.50 | 0.75(10.70 | 0.70 | 0.00(10.00 | 0.00 | 0.25()0.70 | 0.25
wW(R5) | 0.50(10.50 | 0.50 |0.25(0.70 | 0.25 | 0.25(10.25 | 0.25 | 0.75()0.70 | 0.70
w(R6) | 0.00(10.50 | 0.00 | 0.00(10.70 | 0.00 |0.75(10.30 | 0.30 | 0.00()0.70 | 0.00




w(R7) | 0.50()0.50 | 0.50 | 0.75(10.30 | 0.30 | 0.00()0.00 | 0.00 |0.25(10.30 | 0.25

w(R8) | 0.50(10.50 | 0.50 | 0.25(10.30 | 0.25 |0.25(10.25 | 0.25 | 0.75()0.30 | 0.30

w(R9) | 0.00(10.50 | 0.00 |0.00(10.30 | 0.00 |0.75M0.70 | 0.70 | 0.00()0.30 | 0.00

Using the relations (9 ) for Sqd,Sgm, Sqi ,for the 4 cases we get :

Case 1 Case 2 Case 3 Case 4
Sqd 0.77 0.82 0.42 0.46
Sgm 0.50 0.25 0.25 0.70
Sqi 0.00 0.00 0.58 0.00

The crisp values for the abscissa of the output functions surfaces COG ( center of gravity)
using the relation (12 ) and for the different 4 cases we get :

Case 1 Case 2 Case 3 Case 4

Xcg | -60.6 -76.6 12.8 -39.8

This mean that in the case 1 the treatment dose is to be decreased with 60.6%, in case 2
to decrease with 76.6 % ,in the case 3 to increase with 12.8% and in case 4 to decrease
with 39.8 %

8 Other Defuzzification methods

A more plausible Defuzzification method than that used before is given by the relation :

b
Ix.y(x).dx

_a
Xc = b (12)

J’.y(x).dx
a

where a and b are the output (treatment) membership function’s domain limits (a = -100;
b=100) and y(x) is the total output membership function. In our case y(x) is given by the
relation :

y(xX) =[ Sqd.Td(x) + Sg m.Tm(x) +Sqi.Ti(x)] (13)

where Td(x), Tm(x) and Ti(x) are defined by analytical function similar with that used for
S1n, Siz, and S1p, namely :

Td(x) = P(x, ab) +P(x, b.c ).[1-% ]

Tm(x)= @(x, b,c). >

_E v, o) [ 12572

€+ dee). (14)

Ti(x) = B(x, c,d).;(

The values used for the parameters are:
a=-100 b=-50 c=0 d=50 =100

Using the relations (12) and (14) we get for the abscissa (Xc) of the total output
membership function center of gravity ;



Case 1 Case 2 Case 3 Case 4
Xcg | -42.6 -50.8 26.7 -30.5

This method considered as the most plausible Defuzzification method has the disadvantage
of needing a large amount of numerical computing.

8.1 Mean of maxima Defuzzification method (MOM)

Now we describe briefly the Defuzzification method Mean of Maximum (MOM) in the case of
Max-Product inference type. The total output membership function is of the form (fig 9)

Td Ti m Tdl Ti T Td Ti Tm

0.5

1]

=100 0 100

Yoo ¥eg g

Fig 9 The total output membership function

If we compare the 3 obtained values Sqd, Sqz and Sgp we distinguish 3 different possible
cases.

a- Sqd has a maximum value.
In this case the domain in which the membership function Td is maxim is a—b. The value of
the center of this interval is (a+b)/2. Therefore the expected decision point is

Xc = (at+b)/2

b-The Sgi has a maximum value.

By analogy, in this case
Xc = (d+e)/2

c- Sgm has a maximum value.
In this case there is not an interval when the membership function Ti has a maximum but
only one point namely the center c=0. In this case
Xc=c=0
We do not recommend the Defuzzifications First of Maxima and Last of Maxima in
applications as for the cases presented here.

8.2 Defuzzification methods using discrete data

The principle of this method consist in the fact that instead of computing of the output
function center of gravity, by using the relation ( 8 ) based on integral, we use the summing
of the output membership function values computed in relatively reduced number of points.



We note y(X; ) the output membership function calculated at the discrete number of points xj,
where “|” is a relatively small number. Usually the X, points are chosen and disposed at equal
intervals on the axis that represent the membership functions domain of definition.

Td Tm

1 —----- __._
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Fig 10 Treatment msf defuzzification using discrete data

The expected value, namely the value of abscissa of the total output membership function
center of gravity point is given by :

(15)

In the analyzed case the y(x) function is given by the relation (13) and the x; points were
chosen :

a) all points are distributed at 10 percent intervals between them, respectively:
X;--100,-90,-80  ..90, 100 (20 points altogether)

b) the number of used points is 10 (20 percent interval between them)

c) the number of used points is 40 (5 percent interval between them)

Using the relation (10) we get the following final values of the abscissa points of gravity
center of the total output membership function :

Computed based | Computed on 40 | Computed on 20 | Computed on
on relation (8) points points 10 points
Case 1 |-42.6 -43.9 -45.3 -46.5
Case 2 | -50.8 -52.6 -53.5 -56
Case 3 |84 5.6 2.7 3.1
Case 4 | -30.3 -31.1 -32.7 -34.
Conclusion:

Even we consider that the Defuzzification method for computing the abscissa value of the
center of gravity of total output function based on integral (relation 12) as the most plausible,
we recommend the use of the centroid Defuzzification method relying on discrete points.
When we are examining the output data given in Table 2?, we notice the difference between
these data is not too important. The increasing of the discrete number of employed points is
to be examined in every specific case and to be maintained moderate,



8.3 Rules with combined AND and OR operators use.
To diversify the application illustrations, the following the data of the case 2 are used with the

difference that inside of the rules antecedents are present not only AND operators but OR
too.

It results that the input data and the computed membership values are :

Case 2

X; = -15 X, =3
S1n=0.75 S2n=0
S1z=0.25 S2z=0.7
Slp=0 S2p=0.3

The rules are :

R1) IFSIn ORS2n THEN Td
R2) IFSIn ANDS2z  THEN Ti
R3) IFSIn ANDS2p  THEN Ti

R4) IFSlz ORS2n THEN Tm
R5) IFSlz AND S2z THEN Tm
R6) IFSlz ORS2 THEN Tm
R7) IFSlp AND S2n THEN Td
R8) IFSlp OR S2z THEN Td
R9) IFSlp OR S2p THEN T (16)

The rules R1, R7, R8 are referring to the output membership function Td (Treatment
decreasing), the rules R4, R5, R6 are referring to the membership function Tm (Treatment
maintaining) and the rules R2, R3, R9 are referring to Ti ( Treatment increasing)

Using the Max-Product inference method for the output membership function strength we
get:

w(R1) = max ( S1n; S2n) = max ( 0.75; 0.00) = 0.75
w(R2) = min ( S1n; S2z) = min ( 0.75; 0.70) =0.70
w(R3) = min ( S1n; S2p) = min ( 0.75; 0.30) =0.30
w(R4) = max ( S1z; S2n) = max ( 0.25; 0.00) = 0.25
w(R5) = min ( S1z; S2z) = min ( 0.25; 0.70) =0.25
w(R6) = max ( S1z; S2p ) = max ( 0.25; 0.30) = 0.30
w(R7) = min ( S1p; S2n) = min ( 0.00; 0.00) = 0.00
w(R8) = max ( S1p; S2z) = max ( 0.00; 0.70) = 0.70
w(R9) = min ( S1p; S2p ) = max ( 0.00; 0.30) = 0.30 a7

For the output membership firing strength noted in this case with Sd ( Decreasing), Sm
(Maintaining) and Si (Increasing) we get :

Sd = max [ w(R1); w(R7);w(R8)] = max ( 0.75;0.00;0.70) = 0.75
Sm = max [ w(R4); w(R5);w(R6)] = max ( 0.25;0.25;0.30) = 0.30
Si = max [ w(R2); w(R3);w(R9)] = max (0.70;0.30;0.30) = 0.70 (18)

For the total output membership function results :
y(x) = Sd.Td(x) + Sm.Tm(x) + Si.Ti(x) = 0.75.Td(x)+ 0.30.Tm(x)+ 0.7.Ti(x)

Td(x), Tm(x) and Ti(x ) are functions given by (14)
For comparison, the total output function Defuzzification y(x), is accomplished in two
variants.

The first one uses for the abscissa of output membership function the gravity center the
integral (12) and second variant uses the discrete representation of the total membership



function representation y(x;) and the relation (15 ) In this variant five cases are analyzed in
each case the number of discrete point is different, so :
n=200; 100; 50 ;20; 10

In the variant in we use the integral to determine the abscissa value of the output
membership function center of gravity Xcg results

100
Ix.y(x)dx

Xcg = % =-48.3

J’y(x).dx
-100

In the variant of discret defuzzification method the output membership function center of
gravity Xcd is given by :

For the values of different number of discrete points “j” result :

N 200 100 50 20 10
Xcd -48.5 -48.8 -49.2 | -51 |-534

Conclusion:

If we again consider that the method of Defuzzification using integral operation (rel 12) is the
most plausible, it results that the use of Defuzzification in which the output membership
function is computed by discrete points give also acceptable precision.

As the data given in the above table show, the precision diminish if the number of
computing discrete points diminishes also. However the obtained output data for Xcd are
acceptable if we take into account that is a matter of approximate reasoning.

Similarly with the precedent case it is recommended to use the discrete method of
Defuzzification using a reasonable number of discrete points.

9 Comparison of the decision obtained using different membership functions
types

In the Fuzzy Expert Systems a doubtful problem is represented by the establishment of the
linguistic variable membership functions used both for antecedent of rules and for output
function too.

The most used functions are triangular or trapezoidal types. In the Annex A there are given
the analytical and graphical representation of the characteristics of these functions.

Beside these types many other types of functions are used. In the next analyze we use the
Standard functions of type S and Z ( illustrated in Annex A). The membership functions of
these type, in our case are :

(We abreviated the Zadeh’s Standard functions with italic S to make difference from the
abreviations of Symtoms S1 and S2)
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Fig 11 Standard type membership functions

As we already mentioned a difficulty in describing these functions in analytical form is given
by the fact they are defined on limited intervals. For computing we use again the Mathcad
Program and the introduced step function ®(x, a,b) = ®(x-a)- P(x-b).

To describe the membership functions Sn(x),Sz(x) Sp(x) and Td(x), Tm(x) and TI(x) in the
case of Standard functions use, we define these functions using the following aiding
functions:

si(x,a,c)=2 (z—:Z)z

s2(xac) = 1—2 . (L2252 (19)
c-a
where a and c are parameter indicated on fig 11

®(x,b,m1)
Using these functions and taking into account the fact that both curves Sa, Sb and Za, Zb (fig
11) are formed from two different segments, defined on different intervals we get for these
functions :

Sa(x) = @d(x,b,m1).s1(x,b,c) + @(x,m1,c).s2(x,b,c)

Za(x) = @(x,b,m1).(1-s1(x,b,c)) + &(x,m1,c).(1-s2(x,b,c))
Sh(x) = &(x,0,m2).s1(x,0,d) + &(x,m2,d).s2(x,0,d)

Zb(x) = @(x,0,m2).(1-s1(x,0,d) + &(x,m2,d)(1-.s2(x,0,d) (20)

m1 and m2 are the middles of the intervals b..c and c..d

For the expressions of the Fuzzy variables Sn(x), Sz (x) ,Sp(x) and Td(x),Tm(x) and Ti(x) it
results:

Sn(x) = @d(x,a,b) + Za(x).

Sz(x) = Sa(x) + Zb(x).

Sp(x) = Sb(x) + &(x,d,e).

Td(x) = @(x,a,b) + Za(x).

Tm(x) = Sa(x) + Zb(x).

Ti(x) = Sb(x) + @(x,d,e). (21)



The values of a, b,c,d,e parameters are ;

a B C d E
Symptom 1 | -40 -20 0 20 |40
Symptom 2 | -20 -10 0 10 | 20
Traitment -100 -50 0 50 | 100

For the decision computing (treatment evolution) in this example we use the AND operator in
the antecedent part of the rules and the RSS operator to compute the firing strength of the
output membership functions.
To obtain the total output membeship function y(x) we use the relation:

y(x) = Sgn.Td(x) + Sqz.Tm(x)+Sqp.Ti(x) (22)
The abscissa of the center of gravity are computed using the integral relation ( 12)
We want to establish the effect of the Standard membership functions type in comparison
with the triangular and trapezoidal type functions.
We analyze again two cases, for a valid comparison. In the first case the Symptom S1
indicates a decreasing with 15% (x1 = -15) and the Symptom S2 an increasing with 7%
x2=7)
In the second case S1 and S2 symptoms show an increase with 7% ( x1= x2 =7).
The values of the membership functions of S1 and S2 are different although x1=x2, because
the definition intervals are different.
The first (S1) is defined between —40 % and 40% and S2 between —20% and 20%.
The obtained results will be compared with the results obtained by using trapezoidal and
triangular membership functions.
For this comparison we have to compute the values of the membership functions Sln, S1z,
Slp, S2 z n, S2 S2p and the firing strengths Sqd, Sgm and Sqi, and finally the abscissa of
the output function center of gravity. These are :

The values of the membership function of Simptoms S1 and S2 in the case 1

x1=7 x2 =7
Sin | S1z Slp S2n S2z S2p
Standard functions | 0.00 | 0.775 | 0.245 | 0.00 0.18 0.82
Linear functions 0.00 | 0.65 0.35 0.00 |0.30 0.70

The values of the membership function of Simptoms S1 and S2 in the case 2

x1=-15x2 =7
Sln Slz Slp S2n | S2z S2p
Standard functions | 0.875 | 0.125 | 0.00 0.00 | 0.18 0.82
Linear functions 0.75 0.25 0.25 0.00 | 0.30 0.70

The values of the firing strength Sqd, Sgm, Sqi in the case 1

X1=7 x2=7
Sqd Sgm Sqi
Standard functions 0.755 0.18 0.84
Linear functions 0.7 0.3 0.762

The values of the firing strength Sqgd, Sgm, Sqi in the case 2

x1=-15 x2 =7
Sqd Sgm Sqi
Standard functions 0.849 0.125 0.00




| Linear functions | 0.78 | 0.25 | 0.00 |

The values of the abscissa of the output membership function center of gravity in the case 1

x1=7 X2 =7

Xcd
Standard functions 2.69
Linear functions 2.28

The values of the abscissa of the output membership function center of gravity in the case 2

x1=-15 x2 =7
Xcd
Standard functions -56.28
Lineaar functions -50.35

10. Conclusions

From the comparative analysis of both cases, case 1 and case 2, we notice that neither the
values of the membership functions S1n, S1z,S1p, S2n, S2z, S2p nor the firing strength Sqd,
Sgm, Sqi in the both types of membership functions (triangular- trapezoidal or standard S or
Z) does not differ essentially.

The values of the abscissa of the total output membership function (Center of gravity ) that
is the most important in the two analyzed cases differ in our example with less then 6
percent.

In conclusion we recommend the use of triangular and trapezoidal membership
functions tacking into account that the precision with which we operate does not
justify the use of the standard functions which need more complicate computing.

Also we recommend to use the method with discretised data for Defuzzification (using
a reasonable number of discrete points)

What is really very important is the correctness of the rules and therefore we have to
pay a big attention on their elaboration.

Annex

In the fuzzy logic use a disputable question is the selection of forms for the linguistic variable
membership functions. The most used types of membership functions are the linear
(triangular and trapezoidal) fig Al



a) b) c)

Fig Al Triangular and trapezoidal m.s.f
The definition relations are :

0 if xxa
msflx)= 2 if as<x<b (A1)
b-a
1 if x>b
1 if x<a
msf26) = 1- -2 if as<x<b
b-a
o] if x> b (A2)

Besides the linear functions the Standard functions using expressed by second grade

polynoms.
There are also presented in the fig A2. These are known as S and Z functions.
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Fig A2 Standard type msf

The definition relations are given by (20):
s1(x,a,c)=2 (E)2
c-a

C—X
)2

s2(x,a,c) =1-2 .( _
c—-a
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