Sofronie Stefanescu
University of Pitesti
Email <sofstef@sunu.rnc.ro

Computing Spectrum without using Integrals
Part |

1. Introduction
Among the many scientific discoveries of the last century, two of them (on the author’s
opinion) have aided in a spectacular manner the electrical engineering activity. One of
them was the Laplace transformation, which has spared the engineers of the Differential
and Integral equations tedious solving, and another one, which will be described below,
was the Dirac Impulse use.
The Dirac Impulse use allows the spectrum computing using only simple algebraic
operations instead of complex and time- and memory-space computing.
This work is principally based on a excellent book written by

Cebe L “ Fourier Integrals es Sor
which, regrettably, was not written in English, and therefore is less known by the
interested foreign specialists.

2. Fourier Integrals and Properties

Every function can be represented as a sum of sine and cosine waves with different
amplitudes and phases, which is called the frequency spectrum (or frequency response)
of the function. Such a sum may be infinite.

If the function is represented in that way, i.e., by describing the frequencies and
amplitudes, it is called to be depicted in frequency domain. If the function is defined by
values at certain time moments (which is a representation most people are used to), it is
said to be represented in time domain.

The representation in frequency domain does not contain additional information, in fact it
just another way of looking at a function, i.e., a dual representation, but some properties of
function are easier understood in frequency domain (which frequencies are present in the
function with which amplitudes, etc ) other are more obvious in time domain.

The Fourier transform (FT) is a mean to switch between time and frequency domain.
There are numerous applications which require the spectrum of a function given as a time-
dependent function f (t)

To switch from time domain to the frequency domain and back, two versions of the Fourier
transform are needed. The two versions of the Fourier transform are defined by using the
Fourier Integrals:
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If the spectrum function is known then the corresponding f(t ) function is given by :

(1) =71n ofeith(w)d w )

(F(w) is the amplitude density on 1 Hz )
If we have an application on line in which it is required to calculate the spectrum this is a
difficult problem because the computation on the basis on (1) is a relative complicate
operation for computer programming.

In the following we will describe a method for the determination of all practically used time
impulse forms without calculating the Fourier Integral, but using the Dirac Impulse
properties.
We will analyze two methods for this computing:

a) f(t) is given in a analytic form

b) f(t) is given in a graphical form



For an easy understanding of Dirac integral (function) it is necessary to mention some of
the Fourier integral properties.

The linear transformations.
1) If we introduce for direct and inverse Fourier Transforms the notations :
f(t) <3 F(w) and Flw) & f(t) (3)

on the basis of superposition principle we get :

C1fi(t) + ¢ fo(t) +...+Cpfy (t)  ---- C1F1(w) + CoF2 (w) +.... ¢y Fp (W) (4)
where c; Ca. ..Cp are constants

The relation (4 results directly from the Fourier integral (1) and (2) definitions. From this
relation results that if we break up the f(t ) function in some components than the Fourier
integral of the original function is the sum of the Fourier integral of the respectively
components.

This is valuable for the spectrum function too.

The spectrum functions of f(t ) reflected functions.

fmjl. -f(t) b f(-t) -f{-t) 4

N, b7 Ll <

t
a b c i

~¥

=]

In fig 1 are represented some simple f(t ) transformed functions.

Fig1

If f(t) - Fw=A(w) -]jB(w

based on duality and symmetry properties we get; (5)
- ft) <& -F) = -A(w) +]B(w) 6)

f(-t) OG- F(-) = A(w) +]B(w
-f(-t) < F(w)=-A(w) -]B(w)

It is relatively simple to obtain these relations if we break up f(t) in even and odd parts and
observe the effect have the above transformations on the Fourier transformation parts.

The contraction (dilatation ) on time axis or on frequency axis

If fit) <& F(w and c is a constant then

fct) 3 E.F(Q)and respectively
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We get the above relations if in the Fourier integrals we replace t or wwith c.t orc. w



From the (7) relation results a very important property and namely that if f(t) function is c
times contracted (c > 1) then F(w)is c times dilated (extended)on . w axis, and the
amplitude c time is decreasing and the surface stays unchanged. If c <1 then it results the
reciprocal effect.

This property is valid separately for real part A (w) and imaginary part B(w).

The effects are represented in fig 2

Fig2
The effect of time contraction

It is very important to observe that if the f (t) function is contracted then the transformed
F(w) function is dilated. The reciprocal is valid too.

. The spectrum function of f(t) shifted function.

If f (t) function is shifted with T (T is a constant), then if
ft) -3 F(w)
ft-T) <O exp (H.wti). F (w) (8)
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Fig. 3 The translated f(t) function.

The surface theorem
a) Let be the A(w) and B (w ) the real and imaginary parts of the spectrum functions
which are the Fourier Transform of the f(t) time function.(fig 4 ) Because f(t) is a real
function follow that B(0 ) = 0 and then

FO)=A(0) 9)
On the basis of the Fourier integral we get:

FO)=A(0) =] ofe_jwtf(t)dt](w:o): of f(t)dt =S (10)

where S is the surface of the f(t) function.
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Fig. 4
b) Now we compute the f(0) value from the spectrum function, also on the basis of Fourier
integral

(0= fel®F@dwlo =" S, (11)

Swis the A (w) function’s surface.

3 The Dirac Impulse

In the fig. 5 the f(t) function with the S surface is represented. If we introduce the
transformation c.f(ct) and c> 1, then the resulting function is c times on the t axis
contracted and it has a height c times bigger. In this case the S surface is unchanged.

Fig.5 The Dirac impulse spectrum

The f(t) function’s spectrum is illustrated in the fig 5b and the c.f(ct ) function’s spectrum
for c - o is represented as interrupted curves.

If c - o as is shown in fig.5a the function is infinite narrow, infinite high and has the
surface S.

This kind of S; surface function is defined as Dirac impulse. The unity surface Dirac

impulse is noted as &(t), and, as it results from fig ¢ (for c -~ o ), the Dirac impulse
spectrum is a constant equal with the surface S. In conclusion we have

at) < 1 and S.4t) L S (12)
Since B (w) = 0 we conclude that the §(t ) is a odd function.

The shifted Dirac impulse spectrum

Usually the Dirac impulse is represented as a thick vertical line and is characterized by a
simple parameter, the surface S. The shifted Dirac impulse spectrum is shown in fig. 6:
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Fig 6 The spectrum of a shifted Dirac impulse and a impulses pair

The spectrum of a Dirac impuls and impulses pair are (8) :
S/2. it-T)) 0. S/2 .[exp (-jwT )

SR2[Nt-T)+d(+T) [ S/2 .[exp (-jwT) +exp (jwT) = S.cos w T

SI2[ At-T) -0 (t+T)] & S/2 .[exp (-jwT) -exp (jwT) =- S.sin wT (12)

The Dirac impulses in the wdomain

On the duality basis we can define a Dirac impulse in the w domain and we can then
compute the f(t ) transformation of the d (w) function and of a pair of 0 («w) impulses pair
Fig 8
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Fig 8 Dirac impulses in w domain
The Fourier Transform of a wdomain Dirac impulse pair results :

(0= 7S Tdww) . gora e do=
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From the fig 8 we read:

cos it [ .m0 (wwy) +0 (wtwy )]
sinapt <3 . mT[d(wwy) -0 (wHay )]
S0 .2mS.0(w) (14)

The f'(t ) (derivative of f (t)) Fourier integral

If we know the f(t ) function’s Fourier Transform, we can establish the Fourier transform of
the f ’(t) function on the following reasoning : We take the derivative on the both sides of
the Fourier integral :

1 *® t
f(t) =—— JWTE(w)d
0=5 JelOF@do

£(t) =%T ojojaxejth(a))d W (15)
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from (15) results :
f'(t) <- jwF (w) and generally for the n order derivative :

f71) <5 (w)".Flw (16)
The ﬁoof(t)dt Fourier transform

On the basis of above reasoning we obtain

¢ Flw)

[ fdt -0 (17)

And for the case of n times integral it results for the Fourier transformed function
F(w)

(jc)" (18)

Finite hight Dirac Impulse

In the fig. 9a an unity surface rectangle is represented with A width and 1/A heigh
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Fig 9

If A -~ O the impulse become infinitely narrow, infinitely high and with unity surface.
If a function is multiplied with the constant S than their amplitude and surface increases
S-times.
It is a difficult question that the Dirac impulse has an infinitely high amplitude. This may be
removed if as is shown in fig. 9c the impulse has a A high amplitude and A infinite narrow.
In this case the impulse surface is

A.A (infinite small ).
The resulted Dirac impulse is A. A.J(t)

Dirac impulse shifting

If instead of t variable we introduce t-T (T is a positive constant) then the Dirac impulse is
shifted in right side with T and becomes &( t-T).

Fig10.Dirac impulse shifting
The multiplication of a function with Dirac impulse.
In fig 11 is shown one f(t) function and a unity Dirac impulse shifted in t; point If we

multiply these two functions it results a Dirac impulse with f(t)) surface ( outside of t; point
the Dirac impulse has zero value). This means that

[ 1. &t-t) dt="f(t)

Since

f() att)="f()att) (20)

This is a general formula. If
f()=exp(jawt) then

fm e @t Ft-t)dt = el @t (21)
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Fig. 11 Multiplication of a Dirac impulse with an f(t) function
4. Derivative of discontinuous functions

It is known that there are problems with the derivative of discontinuous functions. For the
differential in one discontinuous point the mathematics analysis gives no answer. Due to
introduction of Dirac impulse, this problem has a solution.

For the Fourier analysis this is of great importance, because the signal impulses are
characterized even with these interruptions (discontinuous ) points.

fit) b

Figll Dervative of a discontinous function.

Let f(t) a function with a discontinuous point T (fig 11a) Inside of the vertical line (point T
we introduce a linear function with a A width and a height. This function can be
differentiated without problems and the f * (t) is shown in fig 11c. The result is a rectangle
with a A with, a/A height and a surface S = a.

If A - O, then the linear function becomes a vertical line (fig. 11b) and in the T point the
differential as is shown in the fig. 11c represents a Dirac impulse. The reciprocal is also
true and if we take the integral of the f ‘() function (on the A range) we obtain the original
function.

The use of Dirac impulse in Fourier analysis will be of a great importance.

The Dirac impulse differential will be noted by &'(t), the second differential by &’ (t) and
generally the n order differential by &'(t).

The &(t) and J'(t) impulses spectrum.

The obtained properties for normal functions can be applied without difficulties to Dirac
functions (impulses) too. If we have

f(t) <3 F(w) by applying (16):
f'it) <3 (w.F(w) (22)



If inside of f(t) we introduce & (t) and &(t) ~- 1 then
o' & jw and generally
5(t) 3 (W)’

o (t) & .(w)" (23)
The step function @ (t)
The definition of the step function noted as @(t) and represented in fig. 12 is

1 for t>0
&)= 0 for t<O (24)
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Fig 12 @(t) function

The introduction of this function gives us the possibility to describe a function that exists
only on a limited interval. If we translate with T; the above defined ® (t) function as a
normal function we obtain

& (t-Ti) (figl3 )
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Figl3 The ®(t-T1), - P (t-T2)and P (t-T1)- ® (t- T2) functions
It is also useful to introduce a new function
O(t, TL,T2,) =P (t-T1) - P (t-T2) (25)

The use of the step functions @t ) to describe functions defined on limited
intervals.

As a first example let f(t) = sin awt. This function is defined on the whole —o to + o«
interval (fig 14 a)
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Fig 14 Sinus functions defined on limited interval



If we wish that f(t) be defined only on positive interval, this can be obtained by multiplying
f(t) with ®(t ) and we obtain:
fat) = P(t) f(t) = P(t).sin apt  (26)

illustrated in (fig 14b)
To describe a function defined on a interval T1 and T2 we have to multiply with ®(t ,T1,T2)
and it results:

f(t) =[P(t-T1) - Pt-T2) .f(t) (27)

In the case of the sin ap t function results the curve ilustratedin fig 14c

The relation between @(t ) and 9 (t) functions

Let ®(t,T) the function defined as is shown in fig. 15 a

dtT) = 0 for t<0
T for 0<t<T
1 for t>T (28)
It is evident that for T. — 0 the ®(t, T) function become the @(t) step function ;
otT) = &),
T. -0 (29)

The differential of ®(t,T) is
@, T)=0(t,T) where d(t, T) is a rectangle impulse with a T width (fig 15b)
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Taking the limit T — 0 we obtain;
®'(t,T)= o (t,T) (30)
T. - .0
DT = 0 for t<O
T for 0<t<T
1 for T<t (32)
It results that the differential ®’(t ) of the @(t) is a Dirac impulse 9 (t),
P(t)=09(t) (32)

5. The generalized derivative

As was mentioned the mathematical analysis gives no answer to the problem of
discontinuous functions derivation. This problem can be solved by using the step function
®(t) and Dirac impulse d (t ). For exemplification of the mentioned procedure let f(t ) (fig.
16) one discontinuous and time limited function. The f(t) function has one t; discontinuous
point and one t; interruption point and is limited between 0..t3 time interval.



Fig 16 f(t) time limited function with discontinuous and interruption points

The f'(t) is the generalized differential that take in consideration the discontinuous and
interruption points and f °(t) the normal differential of f(t).
To describe f(t) and to take in consideration the limited intervals we have to use the step
function. For the functions represented in fig 16 it results :

f(t) = [@(t)- Ot-t2 )] .fa(t) + [D(t-t1) - Dt-t2 )].fo(t) +[P(t-t2 ) - P(t-t3)].fa(t ) (33)

The differential of the f(t) is:

P(t) = [P(t)- P(t-te )].F2(t) + [P(t-tr ) - P(t-t2 )].F2(t) HP(t-t2) - Pt-t5)].Fa(t ) +

fa(t).[ At)- At-ta)]+ fa(t).[ At-ta)- At-t2)+ f5(t).[ (tt2)- At-ts)] =

f(t)+(0).+ &(t).f(0) +(t-t1)[f2(t1)-Fu(te)] +A(t-t2)[f3(t2)-Fa(t2)]-At-ts).f3(ts)] =

(t) + f1(0). 8 (O)+ Afr. 8(t-t) +A . S (t-t) . (34)

We have taken in consideration that

o) = [@(t)- (t-ta )].F1(t) + [Pt ) - D(t-t2 )].F2(t) H At ) - Pt-t3)].Fa(t)  (35)
and
Afy = () — f(t1) Af, = 1(3) — f(t)  fa(t3)=0
f1(0) =Afy In this case Af, =0
Finally it results
fi(t) = fOt) +Afy d (t)+ AfL. d(t-t) +A o S (t-1o) (36)
where. f°(t ) is given in relation (35)
The second differential of the f(t) function results if we differentiate f ’'(t) in the same
manner and we obtain:

(L) = [PO] +4fo 8 )+ A1 8 (t-t) +4. & (t-t) (37)

[f°(t)] is calculated in the same manner as f(t).

It results that the f(t) and ° (t) have the same form, the difference being that in the f°(t)
relation instead of of fy(t), fo(t) f3(t) are f'1(t), f'2(t) f5(t).

The differentiation process continues until the differentiated function contains only Dirac
impulses and their differentials.

6.Conclusions :

After the first differentiation resulted: f° (t ) the differential of the normal function.

In the points t=0 and t= t; resulted two Dirac impulses with the values (surfaces) equal to A
fo = f(0) and A f; =f(ty)-f(t2 which represent the increases (decreases) of the function.

In the interruption point t; no Dirac impulse resulted.

No Dirac impulse resulted in the point t3 because this is an interruption point (no change in
amplitude )
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