National Institute Of Materials Physics - Romania

Atomic Structures and Defects in Advanced Materials Laboratory

About us

The lab has been created on January 1-st 2010 after the internal re-organisation of NIMP, by grouping scientists with related fields of interest and expertise in solid state physics and materials science.
Our research activity concerns mainly the physical properties – such as structure, optical, electrical properties – in advanced materials, resulting either as size effects (nanostructures, thin films) or by engineering of structural defects. Although the size scale available through our investigation techniques spans from bulk to nanometric and atomic structures, our research is mainly directed towards the discovery, investigation and manipulation of physical properties at nanometric and atomic scale for the development and characterisation of new materials (dielectrics, semiconductors, alloys, ceramics) to be used in various applications (semiconductor technology, gas sensing, radiation detectors, telecommunications).

 Among the approached topics, we mention:

  • Investigations down to atomic scale by microstructural (TEM/HRTEM/STEM, XRD), spectroscopic (EPR, Mossbauer spectroscopy, EELS, EDS) and optical methods of native and induced defects in bulk and nanostructured solid materials.
  • Investigations of material properties by using paramagnetic point defects as atomic probes.
  • Investigations of the changes induced by defects in ordered and partially disordered solids.
  • Synthesis of oxide semiconducting or magnetic nanostructures for applications in gas sensing, catalysis and photocatalysis.
  • Hyperfine interactions in solids.
  • Modelling of order-disorder transformations in crystalline media and transient phenomena in condensed matter.

A wide variety of investigation techniques and state-of-the-art equipments for materials synthesis, processing and characterization are available in our laboratory:

     Structural methods

  • Analytical Transmission Electron Microscopy (TEM/HRTEM, STEM, EFTEM, EELS, EDS).
  • Analytical Scanning Electron Microscopy and Focused Ion Beam (SEM-FIB, EDS, EBSD).
  • Powder, thin film and single crystal X-ray diffraction (XRD).

     Spectroscopic methods

  • Multifrequency Electron Spin/Paramagnetic Resonance (ESR/EPR) spectroscopy.
  • Mössbauer spectroscopy (57Fe, 151Eu, 119Sn, TMS, SMS and CEMS) techniques.
  • Optical spectroscopy (absorption and emission).

     Gas-sensing measurements

  • Complex electrical measurements under controlled gas atmosphere for gas sensing (Gas Mixing Station).
  • Gas-mixing installation.
  • Catalytic investigations (Photo-acoustic gas analyzer).
  • Relative work function investigations (Kelvin Probe).

     Materials synthesis

  • Single-crystal growth from melt (Czochralski, Bridgman).
  • Preparation of nanocrystalline materials by co-precipitation, solvothermal method and high energy ball milling.

Latest Publications

Structural and transport properties of Cu2CoSnS4 films prepared by spray pyrolysis
Authors: El Khouja, O; Assahsahi, I; Nouneh, K; Touhami, ME; Secu, M; Talbi, A; Khaaissa, Y; Matei, E; Stancu, V; Galatanu, A; Galca, AC

Published: NOV 1 2022, CERAMICS INTERNATIONAL, 48, DOI: 10.1016/j.ceramint.2022.07.185

Layered SnSe nanoflakes with anharmonic phonon properties and memristive characteristics
Authors: Buruiana, AT; Bocirnea, AE; Kuncser, AC; Tite, T; Matei, E; Mihai, C; Zawadzka, N; Olkowska-Pucko, K; Kipczak, L; Babinski, A; Molas, MR; Velea, A; Galca, AC

Published: OCT 15 2022, APPLIED SURFACE SCIENCE, 599, 153983, DOI: 10.1016/j.apsusc.2022.153983

Damage threshold of CuCrFeTiV high entropy alloys for nuclear fusion reactors
Authors: Dias, M; Magalha, S; Antao, F; da Silva, RC; Gonsalves, AP; Carvalho, PA; Correia, JB; Galatanu, A; Alves, E


New superdielectric materials: (1-x) SrFe12O19 - x BNT-BT nanocomposites
Authors: Greculeasa, SG; Comanescu, C; Iacob, N; Kuncser, A; Smaranda, I; Amarande, L; Cioangher, M; Burdusel, M; Teodorescu, V

Published: OCT 1 2022, PHYSICA B-CONDENSED MATTER, 642, 414139, DOI: 10.1016/j.physb.2022.414139

Influence of relative humidity on CO2 interaction mechanism for Gd-doped SnO2 with respect to pure SnO2 and Gd2O3
Authors: Ghica, C; Mihalcea, CG; Simion, CE; Vlaicu, ID; Ghica, D; Dinu, IV; Florea, OG; Stanoiu, A

Published: OCT 1 2022, SENSORS AND ACTUATORS B-CHEMICAL, 368, 132130, DOI: 10.1016/j.snb.2022.132130

You can find us here!

Back to top

Copyright © 2023 National Institute of Materials Physics. All Rights Reserved