Bioinspired artificial muscle-sensor dual devices based on conducting polymers functionalized electrospun fiber networks

Project Director: Dr. Mihaela Beregoi

Development of new materials for fabricating low cost, accessible bioinspired soft robots represents a great challenge because of the difficulty for closely mimicking the models from nature. A generic term utilized very often in soft robotics domain is “artificial muscle” which describes any device that can transform various kind of energy into mechanical motion. Engineering efficient materials utilized for manufacturing artificial muscles with similar properties than biological muscles should take into account a lot of experimental parameters such as material type, its morphology, geometry, etc. The materials used for designing artificial muscles can be divided in three major classes: electroactive polymers, shape memory alloys and electroactive ceramics. The use of first class in such applications presents manifold advantages such as low working voltages, versatility in preparation, fast response time, etc. In this context, the present project aims to develop a reproducible method for fabricating artificial muscles with sensing capabilities by using conducting polymers as electroactive materials and fibers as substrates. Thus, electrospinning will be employed for preparing fiber networks with optimum morphology, sizes and densities. In order to make them conductive, a thin metal layer will be deposited on the fiber networks for a better control of the movement. Further, the metalized fibers will be functionalized with a suitable conducting polymer in order to obtain active materials with improved features. The conducting polymer coated networks will be analyzed from morphological, electrochemical, structural, mechanical and actuation point of view. The experimental parameters will be correlated with the artificial muscle actuation performances for finding the best material configuration and establishing the actuation mechanism. Likewise, the capacity of the fabricated device to identify modification of external stimuli or some biomolecules interactions will be investigate.

Dr. Mihaela Beregoi - as project leader

Prof. Dr. Eng. Sorin Ion Jinga - as mentor

"Conductive Polymeric Fibers for Artificil Muscle Applications" - master thesis

  1. N. PredaA. CostasM. BeregoiN. ApostolA. KuncserC. CurutiuF. Iordache, I. Enculescu. Functionalization of eggshell membranes with CuO–ZnO based p–n junctions for visible light induced antibacterial activity against Escherichia coli, Sci. Rep. 10 (2020) 20960.


Back to top

Copyright © 2021 National Institute of Materials Physics. All Rights Reserved